Categories
about:memory AdBlock Plus add-ons compartments Firefox Memory consumption MemShrink

MemShrink progress, week 30

Add-ons

This was the week of add-ons in MemShrink-land.

Jared Wein fixed a problem in Firefox that was causing zombie compartments if you viewed a native video with any add-on installed that implements the nsIContentPolicy interface.  Examples of such add-ons are Adblock Plus, GreaseMonkey, and NoScript, which are respectively the #1, #3 and #9 most popular add-ons on AMO!  Welcome to the MemShrink club, Jared.

Speaking of GreaseMonkey, Arantius fixed a bug in it that was causing zombie compartments on some GM scripts when opening a background tabs.

I can’t tell who was responsible for the next fix, because the Add-on SDK folks use Github in a way I don’t understand.   But Myk Melez and/or Gabor Krizsanits greatly reduced the number of compartments used in JetPack-style add-ons.  In one example, the number of compartments dropped from 156 to 8, saving about 20MB of memory.  This was a MemShrink:P1 bug.

Also, as far as I can tell, the same patch also fixed bug 680821 which means that all compartments that hold sandboxes created by JetPack-style add-ons will be marked as belonging to that add-on in about:memory.

Jordan Miner reported that the Delicious Bookmarks add-on is leaking excessive numbers of connections to the Places database.  I tried to reproduce the problem and failed, but I don’t have a Delicious account.  If anyone else who does have a Delicious account is able to reproduce, please let me know or comment in the bug.

Finally, Jorge Villalobos and Andrew Williamson from the add-ons team came to this week’s MemShrink meeting.  We had a very fruitful discussion about how to help add-on authors detect and avoid memory leaks, and how to help add-on users understand which add-ons have high memory consumption.  Stay tuned for more details in the coming weeks!

Three Cheers for New Contributors

Krzysztof Kotlenga, a new contributor, removed an OpenGL cache that was wasting 1GB+ of memory on Linux when hardware acceleration was enabled (it’s currently not enabled by default, but will be at some point in the future).   Great work, Krzysztof!  [Update: I originally wrote WebGL instead of OpenGL, which was incorrect.]

Bug Counts

Here are the current bug counts.

  • P1: 26 (-2/+0)
  • P2: 132 (-14/+3)
  • P3: 67 (-2/+5)
  • Unprioritized: 4 (-0/+4)

That’s a net reduction of six bugs.  The main factor here was that I went through some of our P2s and closed ones that were stale and/or covered by other bugs, and downgraded to P3 a few more that are now known to be less important than we first thought.

Before finishing, I’d like to highlight bug 703427.  Richard Hipp, one of the SQLite developers, has a tiny patch that drastically reduces the amount of memory used by SQLite in Firefox — I ran with it for a while and my SQLite memory consumption dropped from ~15MB to less than 3MB.  The patch also causes a moderate speed drop, but it’s unclear if that speed drop is noticeable to Firefox.  We need someone who understands Firefox’s SQLite usage well to evaluate this patch so that Richard knows if it’s something that should go into a released version of SQLite as an option.  The bug is assigned to Marco Bonardo but he’s currently very busy.  Is there anyway else who knows enough about SQLite to take on this bug?

Categories
about:memory AdBlock Plus Firefox Memory consumption MemShrink

MemShrink progress, week 27

Adaptive Memory Behaviour

The biggest news this week was that Justin Lebar landed code to make Firefox’s memory consumption adaptive on Windows.  The code works by wrapping VirtualAlloc() and some similar OS-level allocation functions.  Each time memory is allocated, the amount of available virtual and physical memory is measured by the wrapper.  If either of those amounts are below a threshold, a memory pressure event is triggered, which causes numerous components within Firefox to take steps to reduce their memory consumption.

It might not sound like it, but this is a big deal, and it was a MemShrink:P1 bug.  Firefox runs on a huge variety of machines and devices, and trying to find one-size-fits-all heuristics for discarding regenerable data is a recipe for unhappiness somewhere.  Adaptive behaviour is much better.

The initial settings for this feature are conservative, and some tuning may be needed.

  • The threshold used for virtual memory is 128MB, i.e. if the amount of available virtual memory drops below 128MB a memory pressure event is triggered.  (This number can be changed in about:config via the “memory.low_virtual_memory_threshold_mb” setting.) Hopefully this will reduce the number of OOM crashes that occur on Windows.
  • The threshold used for physical memory is 0, which means that it is currently ignored.  (This number can be changed in about:config via the “memory.low_physical_mem_threshold_mb” setting.) The reason for ignoring it currently is that low physical memory may be caused by a program other than Firefox — we don’t want to start discarding data if Firefox is only using a small fraction of physical memory.  In the future we can probably do better here by triggering memory pressure events if the fraction of physical memory used by Firefox exceeds some threshold;  hopefully this will avoid paging when memory usage is high.
  • Memory pressure events are throttled so they aren’t sent more than once every 10 seconds.  (This number can be changed in about:config via the “memory.low_physical_memory_notification_interval_ms” setting.)  This prevents thrashing in cases where the memory pressure events don’t help reduce memory consumption.

Memory pressure events are also currently unevenly observed — plenty of data could be dropped that currently isn’t — so there is room for improvement there.

Finally, there’s another bug still open to add similar adaptive behaviour on Mac, Linux and Android.  Note also that memory pressure events are also triggered on Android when Firefox goes into the background.

Add-ons

There has been good news for add-ons:  the #1, #6 and #8 most popular add-ons on AMO have all recently seen some MemShrink-related improvements.

Adding memory reporters to add-ons is a really good thing to do, and I plan to write some documentation to encourage other add-on developers to follow suit.  However, if you are an add-on developer and are thinking of doing this, I need to stress one thing:  the reports must have KIND_OTHER so that they end up in the “Other Measurements” list in about:memory.  If they are put in the “explicit” tree, then some memory bytes may be counted twice (once by Firefox, once by the add-on) which will completely screw up about:memory’s results.

Memory Reporters

I landed several improvements to memory reporters.

Bug Counts

Here are the current bug counts.

  • P1: 26 (-2/+1)
  • P2: 139 (-6/+6)
  • P3: 64 (-2/+2)
  • Unprioritized: 0 (-1/+0)

Nice to see the total count drop, even if only by one.

Due to the Christmas break there won’t be a MemShrink meeting nor a MemShrink progress report next week.  I’ll be back in two weeks, enjoy the break!

Categories
about:memory Firefox Memory consumption MemShrink

MemShrink progress, week 26

It’s been six months since MemShrink started!  Here are this week’s events of note.

Memory Reporting

I integrated DMD support into Firefox.  This is a big deal because DMD is crucial for improving the coverage and correctness of memory reporters.  There are several consequences of this.

  • You no longer need to apply a patch to Firefox if you want to use DMD, you just have to configure with --enable-dmd.  (Full instructions are here.)
  • Any memory reporter written in the new style (i.e. using a nsMallocSizeOfFun function created with NS_MEMORY_REPORTER_MALLOC_SIZEOF_FUN) will automatically get coverage in DMD.
  • DMD finds bugs in memory reporters, but it can also find bugs elsewhere.  For example, this week it found that some BaseShapes were being shared incorrectly, which Brian Hackett fixed.

I updated the layout memory reporters to use the new style.  I also updated the documentation on writing memory reporters, to cover more complicated topics like how to measure classes that involve inheritance.  I also added a request:  if you write a memory reporter, please add me as a co-reviewer.

Johnny Stenback implemented per-window DOM memory reporters, which gives much more detail for DOM memory usage in about:memory.  Here’s an example:

per-window dom reporter output in about:memory

Memory Usage Improvements

Boris Zbarsky lazily initialized some rulehash tables, saving about 45KB per blank tab;  this is a nice win for those people who have on-demand tab loading combined with sessions with many tabs.  The same patch also made one of the rulehash tables smaller when it is initialized, which can cause multi-MB savings on workloads of only a few tabs.

Bobby Holley fixed a bad memory leak in xpconnect that could cause unbounded amounts of memory to be leaked, albeit in somewhat unusual circumstances.  The bug was only in Firefox 9 and Firefox 10;  it’s been fixed for 10, and the patches to fix for 9 are ready to land.

Fabrice Desré fixed a regression that caused a zombie compartment when visiting addons.mozilla.org.

Bug Counts

Here are the current bug counts.

  • P1: 27 (-1/+1)
  • P2: 139 (-5/+3)
  • P3: 62 (-0/+2)
  • Unprioritized: 1 (-0/+1)

That’s a net change of +1, and we only had to triage seven bugs in today’s meeting.  And if the trees hadn’t been closed for the past few days I could have fixed two more P2 bugs.

Just for fun, I also counted the number of RESOLVED FIXED (i.e. genuine, not duplicates or invalid) MemShrink bugs.

  • P1: 29
  • P2: 70
  • P3: 14
  • Unprioritized: 35

(If you’re wondering why the number of unprioritized fixed bugs is so high, it’s because MemShrink bugs are only prioritized in MemShrink meetings, which means that any bug that gets filed and fixed in less than 7 days doesn’t get prioritized.)

So there are more bugs still open than have been fixed, but the rate of bug growth is close to zero.

Categories
about:memory Firefox Memory consumption MemShrink

MemShrink progress, week 25

It was a good week for MemShrink.

ObjShrink

The biggest news this week is that Brian Hackett landed his objshrink work.  This has roughly halved the size of Firefox’s representation of JavaScript objects.  It’s also reduced the amount of memory Firefox uses for shapes, a related data structure.  If  you look at about:memory you can see that “gc-heap/objects” and “gc-heap/shapes” entries account for many MBs of memory, so this is a big win.  Read here (under the “Objects” and “Shape” headings) if you want more details.

Memory Reporting

I added some more JavaScript memory reporters and fixed some problems with the existing ones.  Specifically…

  • New: “runtime/threads/temporary” counts various pieces of short-lived data, mostly parse nodes.  It sometimes spikes up to multiple MBs.
  • New: “runtime/threads/normal” measures thread data on the heap that isn’t covered by “runtime/threads/temporary”.  It’s normally a few 100s of KBs.
  • New: “runtime/contexts” measures JSContexts and various related structures, which usually account for a few 10s or 100s of KB.
  • New/fixed: “runtime/threads/regexp-code” measures code generated by the regexp compiler.  This was previously measured under “mjit-code/regexp” but that reporter was broken recently when the location of this generated code was moved, so I fixed it.
  • Fixed: “runtime/atoms-table” and “runtime/runtime-object” are existing reporters that together often account for up to 4.5MB.  They were incorrectly marked as measuring non-heap memory instead of heap memory, meaning that the “explicit” and “heap-unclassified” totals were both incorrectly inflated by that amount.  While fixing this, I also confirmed that we weren’t making the same mistake with any of our other memory reporters.
  • Renamed: “runtime/threads/stack-committed” was previously called “stack-size”.  I renamed it to go with the other “runtime/threads” reports because that’s where it conceptually belongs.

I also added a memory reporter for XPConnect.  It typically accounts for 1MB or more.

I have a lot more work in the pipeline to improve the coverage and correctness of memory reporters.  More about this in the coming weeks as I land the relevant patches!

Other

Joel Maher got RSS memory measurements working for Android on Talos, Mozilla’s performance regression testing suite.  This was a MemShrink:P1 bug.  Graphs of the live data can be seen here.

Benoit Jacob made some improvements how Firefox manages and reports memory used by WebGL.

Bug Counts

Here’s the current bug count.

  • P1: 27 (-1/+1)
  • P2: 141 (-3/+5)
  • P3: 62 (-1/+2)
  • Unprioritized: 0 (-0/+0)

Only three more MemShrink bugs than this time last week!  Pretty good.

Categories
about:memory Memory consumption MemShrink

MemShrink progress report, week 24

Something that happened a while ago but I failed to notice was that Chris Leary added a regexp cache which, among other things, is flushed on every GC.  This fixed an existing problem where cold regexps were not being discarded, which was a MemShrink:P1 bug because 10s or even 100s of MBs of compiled regexp code could accumulate in some circumstances.  Nice work, Chris!

Andrew McCreight fixed two leaks (here and here) involving WeakMaps.  WeakMaps are an EcmaScript 5 feature and so are not used that much at the moment, but their popularity will increase over time.

I landed some memory reporter infrastructure changes.  These will make it much easier to integrate DMD with Firefox, which will help drive about:memory’s “heap-unclassified” number down.  They also do some sanity checking of memory reporters, and this checking has already found some bugs in existing reporters.

Terrence Cole made the JS engine to a “shrink” GC on memory pressure events, such as when about:memory’s “minimize memory usage” button is pressed.  A “shrink” GC is one that causes unused pages to be decommitted.

I wrote two pieces of documentation.

  • The first is a guide to zombie compartments, including instructions on how to test if an add-on causes them.  This guide is similar in spirit to an old blog post of mine, but explains things more carefully.  There is a QA test day planned for Friday, December 16, and hopefully some extensive add-on leak testing will happen on that day.
  • The second is a guide to implementing memory reporters.  Please read it if you ever have to implement one.

In publicity news, ZDNet published a story about how Google’s +1 buttons consume a lot of memory, particular in the newly redesigned Google Reader.  The author used Firefox’s about:memory page to determine this, which enabled him to point the finger at Google’s JS code instead of Firefox.  (Dietrich Ayala wrote about this topic previously, and wrote the Wallflower add-on in response;  the Antisocial subscription for AdBlock Plus apparently has the same effect.)

Here’s the current bug count.

  • P1: 27 (-5/+1)
  • P2: 139 (-4/+11)
  • P3: 61 (-0/+1)
  • Unprioritized: 0 (-4/+0)

The P1s went down because in today’s MemShrink meeting we reprioritized several that are now less important than they were.

Categories
about:memory Firefox Memory consumption MemShrink

MemShrink progress report, week 22

This was a quieter week.

Andrew McCreight finished his static analysis to detect cycle collector leaks.  See the details in the bug (and talk to Andrew) if you are interested in using this analysis.

I shrunk the size of js::HashTable by 4 bytes on 32-bit platforms and 8 bytes on 64-bit platforms.  This saves a few 10s or 100s of KB on typical workloads.

Marco Bonardo decreased the default maximum page size of SQLite connections, which can reduce SQLite memory usage somewhat.

Olli Pettay avoided some wasted space in one of the cycle collector’s data structures.  The cycle collector uses lots of memory but for a short time when it runs;  this change will reduce the size of this memory spike.

Gian-Carlo Pascutto added a memory reporter for one of the data structures used by the url-classifier.  This shows up in about:memory under “explicit/storage/prefixset” and is often over 1MB.

Justin Lebar improved the measurement of nsTArray’s memory usage, which will reduce the size of “heap-unclassified” in about:memory by a small amount.

Justin also wrote a good blog post about the challenges of addressing leaks in add-ons.

We only had seven new MemShrink bugs to triage in today’s meeting;  I’m pretty sure that is the fewest we’ve ever had.  Here are the current bug counts.

  • P1: 29 (+1/-1)
  • P2: 127 (-2/+3)
  • P3: 58 (-3/+2)
  • Unprioritized: 0 (-0/+0)

These counts are notable because the total number (214) is the same as last week!  Maybe the number will start dropping soon.

One thing worth pointing out about the +/- numbers is that if a bug is opened and closed between my weekly reports, it does not get counted in the +/- numbers.  In a way this is good, because it means that duplicate bugs and invalid bugs don’t affect the numbers.  But it also fails to capture bugs that were reported and fixed quickly.  (I usually describe such bugs in my posts, however.)

Categories
about:memory Firefox Garbage Collection Memory consumption MemShrink SQLite

MemShrink progress, week 21

MemShrink:P1 Bugs fixed

Terrence Cole made a change that allows unused arenas in the JS heap to be decommitted, which means they more or less don’t cost anything.  This helps reduce the cost of JS heap fragmentation, which is a good short-term step while we are waiting for a compacting garbage collector to be implemented.  Terrence followed it up by making the JS garbage collector do more aggressive collections when many decommitted arenas are present.

Justin Lebar enabled jemalloc on MacOS 10.7.  This means that jemalloc is finally used on all supported versions of our major OSes: Windows, Mac, Linux and Android.  Having a common heap allocator across these platforms is great for consistency of testing and behaviour, and makes future improvements involving jemalloc easier.

Gabor Krizsanits created a new API in the add-on SDK that allows multiple sandboxes to be put into the same JS compartment.

Other Bugs Fixed

I registered jemalloc with SQLite’s pluggable allocator interface.  This had two benefits.  First, it means that SQLite no longer needs to store the size of each allocation next to the allocation itself, avoiding some clownshoes allocations that wasted space.  This reduces SQLite’s total memory usage by a few percent.  Second, it makes the SQLite numbers in about:memory 100% accurate;  previously SQLite was under-reporting its memory usage, sometimes significantly.

Relatedly, Marco Bonardo made three changes (here, here and here) that reduce the amount of memory used by the Places database.

Peter Van der Beken fixed a cycle collector leak.

I tweaked the JavaScript type inference memory reporters to provide better coverage.

Jiten increased the amount of stuff that is released on memory pressure events, which are triggered when Firefox on Android moves to the background.

Finally, I created a meta-bug for tracking add-ons that are known to have memory leaks.

Bug Counts

I accidentally deleted my record of the live bugs from last week, so I don’t have the +/- numbers for each priority this week.

  • P1: 29 (last week: 35)
  • P2: 126 (last week: 116)
  • P3: 59 (last week: 55)
  • Unprioritized: 0 (last week: 5)

The P1 result was great this week — six fewer than last week.  Three of those were fixed, and three of those I downgraded to P2 because they’d been partially  addressed.

For a longer view of things, here is a graph showing the MemShrink bug count since the project started in early June.

memshrink bug count

There was an early spike as many existing bugs were tagged with “MemShrink”, and a smaller spike in the middle when Marco Castellucio tagged a big pile of older bugs.  Other than that, the count has marched steadily upward at the rate of about six per week.  Many bugs are being fixed and definite improvements are being made, but this upward trend has been concerning me.

Future Directions

So in today’s MemShrink meeting we spent some time discussing future directions of MemShrink.  Should we continue as is?  Should we change our focus, e.g. by concentrating more on mobile, or setting some specific targets?

The discussion was long and wide-ranging and not easy to summarize.  One topic was “what is the purpose of MemShrink?”  The point being that memory usage is really a secondary measure.  By and large, people don’t really care how many MB of memory Firefox is using;  they care how responsive it is, and it’s just assumed that reducing memory usage will help with that.  With that in mind, I’ll attempt to paraphrase and extrapolate some goals (apologies if I’ve misrepresented people’s opinions).

  • On 64-bit desktop, the primary goal is that Firefox’s performance should not degrade after using it heavily (e.g. many tabs) for a long time.  This means it shouldn’t page excessively, and that operations like garbage collection and cycle collection shouldn’t get slower and slower.
  • On mobile, the primary goal probably is to reduce actual memory usage.  This is because usage on mobile tends to be lighter (e.g. not many tabs) so the longer term issues are less important.  However, Firefox will typically be killed by the OS if it takes up too much memory.
  • On 32-bit desktop, both goals are relevant.

As for how these goals would change our process, it’s not entirely clear.  For desktop, it would be great to have a benchmark that simulates a lot of browsing (opening and closing many sites and interacting with them in non-trivial ways).  At the end we could measure various things, such a memory usage, garbage and cycle collection time, and we could set targets to reduce those.  For mobile, the current MemShrink process probably doesn’t need to change that much, though more profiling on mobile devices would be good.

Personally, I’ve been spreading myself thinly over a lot of MemShrink bugs.  In particular, I try to push them along and not let them stall by doing things like trying to reproduce them, asking questions, etc.  I’ve been feeling lately like it would be a better use of my time to do less of that and instead dig deeply into a particular area.  I thought about working on making JS script compilation lazy, but now I’ve decided instead to focus primarily on improving the measurements in about:memory, in particular, reducing the size of “heap-unclassified” by improving existing memory reporters and adding new ones. I’ve decided this because it’s an area where I have expertise, clear ideas on how to make progress, and tools to help me.  Plus it’s important;  we can’t make improvements without measurements, and about:memory is the best memory measurement tool we have.  Hopefully other people agree that this is important to work on 🙂

Categories
Firefox JägerMonkey Memory consumption MemShrink Tracemonkey Uncategorized

MemShrink progress, week 20

Surprise of the week

[Update: This analysis about livemarks may be wrong.  Talos results from early September show that the MaxHeaps number increased, and the reduction when the “Latest Headlines” livemark was removed has undone that increase.  So livemarks may not be responsible at all, it could just be a coincidence.  More investigation is needed!]

Jeff Muizelaar removed the “Latest Headlines” live bookmark from new profiles.  This was in the Bookmarks Toolbar, and so hasn’t been visible since Firefox 4.0, and most people don’t use it.  And it uses a non-zero amount of memory and CPU.  Just how non-zero was unclear until Marco Bonardo noticed some big performance improvements.  First, in the Talos “MaxHeap” results on WinNT5.2:

Talos MaxHeap graph

And secondly in the Talos “Allocs” results on WinNT5.2 and Mac10.5.2:

Talos Allocs graph

In the WinNT5.2 cases, it looks like we had a bi-modal distribution previously, and this patch changed things so that the higher of the two cases never occurred.  In the Mac10.5.2 case we just had a simple reduction in the number of allocations.  On Linux the results were less conclusive, but there may have been a similar if smaller effect.

This surprised me greatly.  I’ve done a lot of memory profiling of Firefox and never seen anything that pointed to the feed reader as using a lot of memory.  This may be because the feed reader’s usage is falling into a larger, innocuous bucket, such as JS or generic strings.  Or maybe I just missed the signs altogether.

Some conclusions and questions:

  • If you have live bookmarks in your bookmarks toolbar, remove them! [Update: I meant to say “unused live bookmarks”.]
  • We need to work out what is going on with the feed reader, and optimize its memory usage.
  • Can we disable unused live bookmarks for existing users?

Apparently nobody really owns the feed reader, because previous contributors to it have all moved on.  So I’m planning to investigate, but I don’t know the first thing about it.  Any help would be welcome!

 Other stuff

There was a huge memory leak in the Video DownloadHelper add-on v4.9.5, and possibly earlier versions.  This has been fixed in v4.9.6a3 and the fix will make it into the final version v4.9.6 when it is released.  That’s one more add-on leak down, I wonder how many more there are to go.

TraceMonkey, the trace JIT, is no longer built by default.  This means it’s no longer used, and this saves both code and data space.  The old combination of TraceMonkey and JaegerMonkey is slower than the new combination of JaegerMonkey with type inference, and TraceMonkey is also preventing various clean-ups and simplifications, so it’ll be removed entirely soon.

I refined the JS memory reporters in about:memory to give more information about objects, shapes and property tables.

I avoided creating small property tables, removed KidHashes when possible, and reduced the size of KidHashes with few entries.

I wrote about various upcoming memory optimizations in the JS engine.

Justin Lebar enabled jemalloc on MacOS 10.5 builds.  This was expected to be a space improvement, but it also reduced the “Tp5 MozAfterPaint” page loading benchmark by 8%.

Robert O’Callahan avoided excessive memory usage in certain DOM animations on Windows.

Drew Willcoxon avoided excessive memory usage in context menu items created by the add-on SDK.

Bug Counts

  • P1: 35 (-1, +1)
  • P2: 116 (-2, +5)
  • P3: 55 (-2, +3)
  • Unprioritized: 5 (-4, +5)

At this week’s MemShrink meeting we only had 9 bugs to triage, which is the lowest we’ve had in a long time.  It feels like the MemShrink bug list is growing slower than in the past.

Categories
about:memory Firefox Garbage Collection JägerMonkey Memory consumption MemShrink Tracemonkey

SpiderMonkey is on a diet

One thing I’ve learnt while working for Mozilla is that a web browser can be characterized as a JavaScript execution environment that happens to have some multimedia capabilities.  In particular, if you look at Firefox’s about:memory page, the JS engine is very often the component responsible for consuming the most memory.

Consider the following snapshot from about:memory of the memory used by a single JavaScript compartment.

about:memory snapshot

(For those of you who have looked at about:memory before, some of those entries may look unfamiliar, because I landed a patch to refine the JS memory reporters late last week.)

There is work underway to reduce many of the entries in that snapshot.  SpiderMonkey is on a diet.

Objects

Objects are the primary data structure used in JS programs;  after all, it is an object-oriented language.  Inside SpiderMonkey, each object is represented by a JSObject, which holds basic information, and possibly a slots array, which holds the object’s properties. The memory consumption for all JSObjects is measured by the “gc-heap/objects/non-function” and “gc-heap/objects/function” entries in about:memory, and the slots arrays are measured by the “object-slots” entries.

The size of a non-function JSObject is currently 40 bytes on 32-bit platforms and 72 bytes on 64-bit platforms.  Brian Hackett is working to reduce that to 16 bytes and 32 bytes respectively. Function JSObjects are a little larger, being (internally) a sub-class of JSObject called JSFunction.  JSFunctions will therefore benefit from the shrinking of JSObject, and Brian is slimming down the function-specific parts as well.  In fact, these changes are complete in the JaegerMonkey repository, and will likely be merged into mozilla-central early in the Firefox 11 development period.

As for the slots arrays, they are currently arrays of “fatvals” A fatval is a 64-bit internal representation that can hold any JS value — number, object, string, whatever.  (See here for details, scroll down to “Mozilla’s New JavaScript Value Representation”;  the original blog entry is apparently no longer available).  64-bits per entry is overkill if you know, for example, that you have an array full entirely of integers that could fit into 32 bits.  Luke Wagner and Brian Hackett have been discussing a specialized representation to take advantage of such cases.  Variations on this idea have been tried twice before and failed, but perhaps SpiderMonkey’s new type inference support will provide the right infrastructure for it to happen.

Shapes

There are a number of data structures within SpiderMonkey dedicated to making object property accesses fast.  The most important of these are Shapes.  Each Shape corresponds to a particular property that is present in one or more JS objects.  Furthermore, Shapes are linked into linear sequences called “shape lineages”, which describe object layouts.  Some shape lineages are shared and live in “property trees”.  Other shape lineages are unshared and belong to a single JS object;  these are “in dictionary mode”.

The “shapes/tree” and “shapes/dict” entries in about:memory measure the memory consumption for all Shapes.  Shapes of both kinds are the same size;  currently they are 40 bytes on 32-bit platforms and 64 bytes on 64-bit platforms.  But Brian Hackett has also been taking a hatchet to Shape, reducing them to 24 bytes and 40 bytes respectively.  This has required the creation of a new auxiliary BaseShape type, but there should be many fewer BaseShapes than there are Shapes.  This change will also increase the number of Shapes, but should result in a space saving overall.

SpiderMonkey often has to search shape lineages, and for lineages that are hot it creates an auxiliary hash table, called a “property table”, that makes lookups faster.  The “shapes-extra/tree-tables” and “shapes-extra/dict-tables” entries in about:memory measure these tables.  Last Friday I landed a patch that avoids building these tables if they only have a few items in them;  in that case a linear search is just as good.  This reduced the amount of memory consumed by property tables by about 20%.

I mentioned that many Shapes are in property trees.  These are N-ary trees, but most Shapes in them have zero or one child;  only a small fraction have more than that, but the maximum N can be hundreds or even thousands.  So there’s a long-standing space optimization where each shape contains (via a union) a single Shape pointer which is used if it has zero or one child.  But if the number of children increases to 2 or more, this is changed into a pointer to a hash table, which contains pointers to the N children.  Until recently, if a Shape had a child deleted and that reduced the number of children from 2 to 1, it wouldn’t be converted from the hash form back to the single-pointer.  I changed this last Friday.  I also reduced the minimum size of these hash tables from 16 to 4, which saves a lot of space because most of them only have 2 or 3 entries.  These two changes together reduced the size of the “shapes-extra/tree-shape-kids” entry in about:memory by roughly 30–50%.

Scripts

Internally, a JSScript represents (more or less) the code of a JS function, including things like the internal bytecode that SpiderMonkey generates for it.  The memory used by JSScripts is measured by the “gc-heap/scripts” and “script-data” entries in about:memory.

Luke Wagner did some measurements recently that showed that most (70–80%) JSScripts created in the browser are never run.  In hindsight, this isn’t so surprising — many websites load libraries like jQuery but only use a fraction of the functions in those libraries.  It wouldn’t be easy, but if SpiderMonkey could be changed to generate bytecode for scripts lazily, it could reduce “script-data” memory usage by 60–70%, as well as shaving non-trivial amounts of time when rendering pages.

Trace JIT

TraceMonkey is SpiderMonkey’s original JIT compiler, which was introduced in Firefox 3.5.  Its memory consumption is measured by the “tjit-*” entries in about:memory.

With the improvements that type inference made to JaegerMonkey, TraceMonkey simply isn’t needed any more.  Furthermore, it’s a big hairball that few if any JS team members will be sad to say goodbye to.  (js/src/jstracer.cpp alone is over 17,000 lines and over half a megabyte of code!)

TraceMonkey was turned off for web content JS code when type inference landed.  And then it was turned off for chrome code.  And now it is not even built by default.  (The about:memory snapshot above was from a build just before it was turned off.)  And it will be removed entirely early in the Firefox 11 development period.

As well as saving memory for trace JIT code and data (including the wasteful ballast hack required to avoid OOM crashes in Nanojit, ugh), removing all that code will significantly shrink the size of Firefox’s code.  David Anderson told me the binary of the standalone JS shell is about 0.5MB smaller with the trace JIT removed.

Method JIT

JaegerMonkey is SpiderMonkey’s second JIT compiler, which was introduced in Firefox 4.0.  Its memory consumption is measured by the “mjit-code/*” and “mjit-data” entries in about:memory.

JaegerMonkey generates a lot of code.  This situation will hopefully improve with the introduction of IonMonkey, which is SpiderMonkey’s third JIT compiler.  IonMonkey is still in early development and won’t be integrated for some time, but it should generate code that is not only much faster, but much smaller.

GC HEAP

There is a great deal of work being done on the JS garbage collector, by Bill McCloskey, Chris Leary, Terrence Cole, and others.  I’ll just point out two long-term goals that should reduce memory consumption significantly.

First, the JS heap currently has a great deal of wasted space due to fragmentation, i.e. intermingling of used and unused memory.  Once moving GC — i.e. the ability to move things on the heap — is implemented, it will pave the way for a compacting GC, which is one that can move live things that are intermingled with unused memory into contiguous chunks of memory.  This is a challenging goal, especially given Firefox’s high level of interaction between JS and C++ code (because moving C++ objects is not feasible), but one that could result in very large savings, greatly reducing the “gc-heap/arena/unused” and “gc-heap-chunk-*-unused” measurements in about:memory.

Second, a moving GC is a prerequisite for a generational GC, which allocates new things in a small chunk of memory called a “nursery”.  The nursery is garbage-collected frequently (this is cheap because it’s small), and objects in the nursery that survive a collection are promoted to a “tenured generation”.  Generational GC is a win because in practice the majority of things allocated die quickly and are not promoted to the tenured generation.  This means the heap will grow more slowly.

Is that all?

It’s all I can think of right now.  If I’ve missed anything, please add details in the comments.

There’s an incredible amount of work being done on SpiderMonkey at the moment, and a lot of it will help reduce Firefox’s memory consumption.  I can’t wait to see what SpiderMonkey looks like in 6 months!

Categories
Fennec Firefox Garbage Collection Memory consumption MemShrink

MemShrink progress, week 19

Good News

Peter Van der Beken fixed a leak caused by chrome code that injects a function into pages.  This was a MemShrink P1 bug.  The commentary in the bug is confusing, but this may have been affecting numerous add-ons including Firebug. (Bug 669730 is open for tracking leaks in Firebug;  it hasn’t yet been confirmed whether this fix has helped Firebug.)

Andrew McCreight rewrote JS_DumpHeap so that it dumps the complete JS object graph.  This was a MemShrink P1 bug because it’s an important piece of infrastructure for writing leak detection tools.

Justin Lebar fixed the measurement of RSS on Mac.  This was a MemShrink P1 bug because it prevented us from enabling jemalloc on Mac 10.5 machines.

Brian Hackett tweaked the JS engine so that more method JIT code can be discarded periodically, particularly chrome code in system compartments.

Oleg Romashin avoided using transparent layers in Fennec remote offscreen viewports.  This saves 5MB of memory in the active tab.

I added a memory reporter for the startup cache.  This is often around 1MB of memory, but it’s allocated via mmap/VirtualAlloc and so doesn’t change the “heap-unclassified” number in about:memory.

Boris Zbarsky fixed a small leak involving CSS transforms.

Bad News

It appears a bad memory regression has occurred in the past week or so.  Several people have reported multi-second pauses caused by garbage collection and cycle collection.  The problem only seems to strike when many tabs are open and/or the browser has been running for multiple days.  This needs investigation;  if you are experiencing similar problems please report in the bug.  Reliable steps to reproduce this bug will be invaluable.  If you turn on javascript.options.mem.log in about:config you can see when GCs and CCs occur and how long they take, which is helpful for diagnosis.

Bug Counts

The current bug counts are as follows.

  • P1: 35 (-5, +3)
  • P2: 113 (-3, +8)
  • P3: 54 (-0, +1)
  • Unprioritized: 4 (-5, +3)

I want to point out this bug, which presents an idea to help hunt down reproducible leaks that occur when users have multiple add-ons present.  This is important because many of the leaks reported by users recently are due to add-ons, but often the reporter has many add-ons installed which makes finding the culprit painful.  The goal is to write a Firefox add-on that selectively disables installed add-ons, so that a user can bisect them to discover which add-on is responsible for the leak.  This bisecting process is something that people can do manually, but an add-on that automates the process would make things easier and less error-prone.  Mercurial’s ‘hg bisect’ command would serve as a useful comparison.  Ehsan Akhgari has volunteered to mentor anyone who would like to try to implement this.