Intro
I thought I’d write up one of those periodic posts describing my workflow. My workflow is not best for everyone. Nor is it the best possible one for me, since I’m a creature of habit and cling to comfortable tools. But it can be helpful to look at what others do, and see what you might be able to steal.
This is going to be more of a summary overview than an in-depth description or tutorial. I am happy to expand on bits you are curious about. Note that there are good docs already for the “normal” workflow at http://mozilla-version-control-tools.readthedocs.io/en/latest/hgmozilla/index.html
A number of things here use local crap that I’ve piled up over time. I’ve published a repository containing some of them. At the moment, I have it uploaded to two difference places. I don’t know how long I’ll keep them in sync before giving up on one:
Also, note that the WordPress formatting of this document isn’t very good; you’d probably be better off reading this on github, especially since I will be keeping it up to date there and not here on my blog.
Code Management
I use mercurial. I like mercurial. I used git first, for quite a while, but it just doesn’t stick in my brain.
I formerly used mq, and when I’d finally had enough of it, I tried to make my vanilla hg workflow provide as many of the same benefits as possible. I also use evolve[1], though it’s mostly just to make some things nicer.
I use phases heavily to keep track of what’s “mine”. If you’re pushing to any personal repositories, be sure to mark them non-publishing.
Pulling from upstream
I use the mozilla-unified repository. I have this in my ~/.hgrc:
[paths]
unified = https://hg.mozilla.org/mozilla-unified
so I can pull with
% hg pull unified
Read more on the unified repo. I will usually rebase on top of inbound. ./mach mercurial-setup
should set you up with firefoxtree, which will cause the above pull to advance some local tags that will conveniently give you the head of the various repositories. My usual next step is
% hg rebase -d inbound
That assumes you are currently updated to the “patch stack” that you want to rebase, probably with a bookmark at its head.
What’s my state?
The biggest thing I missed from mq was an easy way to see my current “patch stack”. My main tool for this is an alias hg ls
:
% hg ls
418116|8b3ea20f546c Bug 1333000 - Display some additional diagnostic information for ConstraintTypeSet corruption, r=jandem
418149|44e7e11f4a71 No bug. Attempt to get error output to appear.
418150|12723a4fa5eb Bug 1349531 - Remove non-threadsafe static buffers
418165|9b790021a607 Bug 1367900 - Record the values and thresholds for GC triggers
418171|5e12353100f6 Bug 1167452 - Incrementalize weakmap marking weakmap.incremental
You can’t see the colors, sorry. (Or if you can, you’re looking at this document on bitbucket and the colors are random and crazy.) But the first line is orange, and is the public[2] revision that my current patch stack is based on. The remaining lines are the ancestry of my current checkout. Note the weird format: I have it display “|” so I can double-click the hash and copy it. If I were smarter, I would teach my terminal to work with the normal ‘:’ separator. Without breaking URL highlighting.
“weakmap.incremental” is green in my terminal. It’s a bookmark name. Bookmarks are my way of keeping track of multiple things I’m working on. They’re sort of feature branches, except I have a bad habit of piling up a bunch of unrelated things in my patch stack. If they start interfering with each other too much, I’ll rebase them onto the tip of my mozilla-inbound checkout and give them their own bookmark names:
% hg rebase -d inbound weakmap.incremental
% hg book -r 9b790021a607 gc.triggers
% hg rebase -d inbound gc.triggers
The implementation of hg ls
in my ~/.hgrc is:
[alias]
# Will only show changesets that chain to the working copy.
ls = !if [[ -n "$1" ]]; then r="$1"; else r=.; fi; $HG log -r "parents(::$r and not public()) + ::$r and not public()" --template "{label('changeset.{phase}', '{rev}|{node|short}')} {label('tags.normal', ifeq(tags, '', '', ifeq(tags, 'tip', '', '{tags}\n ')))} {desc|firstline} {label('tags.normal', bookmarks)}\n"
sl = ls
(Note that I mistype hg ls
as hg sl
about 40% of the time. You may not be so burdened.) There are better aliases for this. I think ./mach mercurial setup might give you hg wip
or something now? But I like the terse output format of mine. (Just ignore that monstrosity of a template in the implementation.)
That works for a single stack of patches underneath a root bookmark. To see all of my stacks, I do:
% hg lsb
work Force-disable JIT optimization tracking
haz.specialize Implement a mechanism to specialize functions on the function pointers passed in
sixgill.tc Try marking JSCompartment as a GCThing for the hazard analysis
phase-self-time phase diagnostics -- it really is what I said, with parallel tasks duration
GCCellPtr.TraceEdge Implement TraceEdge for GCCellPtr
weakmap.incremental Bug 1167452 - Incrementalize weakmap marking
‘lsb’ stands for ‘ls bookmarks’. And the above output is truncated, because it’s embarrassing how much outdated crap I have lying around. The implementation of lsb in my ~/.hgrc:
[alias]
lsb = log -r 'bookmark() and not public()' -T '{pad("{bookmarks}", 30)} {desc|firstline}\n'
Note that this displays only non-public changesets. (A plain hg bookmarks
will dump out all of them… sorted alphabetically. Bleagh.) That means that when I land something, I don’t need to do anything to remove it from my set of active features. If I land the whole stack, then it’ll be public and so will disappear from hg lsb
. If I land part of the stack, then the bookmarked head will still be visible. (But if I bookmarked portions of the stack, then the right ones will disappear. Phases are cool.)
Working on code
Updating, bookmarking
When starting on something new, I’ll update to ‘inbound’ (feel free to use ‘central’ if you don’t want to live dangerously. Given that you’ll have to rebase onto inbound before landing anyway, ‘central’ is probably a much smarter choice.) Then I’ll create a bookmark for the feature/fix I’m working on:
% hg pull unified
% hg update -r inbound
% hg book remove.xul
Notice the clunky name “remove.xul”. I formerly used ‘-‘ to separate words in my bookmark names, but ‘-‘ is a revset operator. It’ll still work for many things (and I think it’d work with everything if you did eg hg log -r 'bookmark("remove-xul")'
, but that’s too much typing). Using periods as separators, that’s just hg log -r remove.xul
.
Making commits
I will start out just editing code. Once it’s in a reasonable state, or I need to switch to something else, I’ll commit normally:
% hg commit -m 'make stuff gooder'
Then while I’m being a good boy and continuing to work on the feature named in the bookmark, I’ll just keep amending that top commit:
% hg amend
hg amend
is a command from the mutable-history aka evolve extension[1]. If you’re not using it, you could substitute hg commit --amend
, but it will annoyingly keep asking you to update the commit message. There’s a fix, but this document is about my workflow, not yours.
But often, I will get distracted and begin working on a different feature. I could update to inbound or central and start again, but that tends to touch too many source files and slow down my rebuilds, and I have a lot of inertia, so usually I’ll just start hacking within the same bookmarked patch stack. When done or ready to work on the original (or a new) feature, I’ll make another commit.
When I want to go back to working on the original feature, I still won’t bother to clean things up, because I’m a bad and lazy person. Instead, I’ll just start making a bunch of micro-commits pertaining to various of the patches in my current stack (possibly one at a time with hg commit
, or possibly picking apart my working directory changes with hg commit -i
; see below). I use a naming convention in the patch descriptions of “M-“. So after a little while, my patch stack might look like:
418116|8b3ea20f546c Bug 1333000 - Display some additional diagnostic information for ConstraintTypeSet corruption, r=jandem
418149|44e7e11f4a71 No bug. Attempt to get error output to appear.
418150|12723a4fa5eb Bug 1349531 - Remove non-threadsafe static buffers
418165|9b790021a607 Bug 1367900 - Record the values and thresholds for GC triggers
418171|5e12353100f6 Bug 1167452 - Incrementalize weakmap marking
418172|deadbeef4dad M-triggers
418173|deadbeef4dad M-static
418174|deadbeef4dad M-triggers
418175|deadbeef4dad M-weakmap
418176|deadbeef4dad M-triggers
What a mess, huh? Now comes the fun part. I'm a huge fan of the 'chistedit' extension[3]. The default 'histedit' will do the same thing using your text editor; I just really like the curses interface. I have an alias to make chistedit use a reasonable default for which revisions to show, which I suspect is no longer needed now that histedit has changed to default to something good. But mine is:
[alias]
che = chistedit -r 'not public() and ancestors(.)'
Now hg che
will bring up a curses interface showing your patch stack. Use j/k to move the highlight around the list. Highlight one of the patches, say the first "M-triggers", and then use J/K (K in this case) to move it up or down in the list. Reshuffle the patches until you have your modification patches sitting directly underneath the main patch, eg
pick 418116|8b3ea20f546c Bug 1333000 - Display some additional diagnostic information for ConstraintTypeSet corruption, r=jandem
pick 418149|44e7e11f4a71 No bug. Attempt to get error output to appear.
pick 418150|12723a4fa5eb Bug 1349531 - Remove non-threadsafe static buffers
pick 418173|deadbeef4dad M-static
pick 418165|9b790021a607 Bug 1367900 - Record the values and thresholds for GC triggers
pick 418174|deadbeef4dad M-triggers
pick 418172|deadbeef4dad M-triggers
pick 418176|deadbeef4dad M-triggers
pick 418171|5e12353100f6 Bug 1167452 - Incrementalize weakmap marking
pick 418175|deadbeef4dad M-weakmap
Now use 'r' to "roll" these patches into their parents. You should end up with something like:
pick 418116|8b3ea20f546c Bug 1333000 - Display some additional diagnostic information for ConstraintTypeSet corruption, r=jandem
pick 418149|44e7e11f4a71 No bug. Attempt to get error output to appear.
pick 418150|12723a4fa5eb Bug 1349531 - Remove non-threadsafe static buffers
roll^ 418173|deadbeef4dad
pick 418165|9b790021a607 Bug 1367900 - Record the values and thresholds for GC triggers
roll^ 418174|deadbeef4dad
roll^ 418172|deadbeef4dad
roll^ 418176|deadbeef4dad
pick 418171|5e12353100f6 Bug 1167452 - Incrementalize weakmap marking
roll^ 418175|deadbeef4dad
Notice the caret that shows the direction of the destination patch, and that the commit messages for the to-be-folded patches are gone. If you like giving your micro-commits good descriptions, you might want to use 'f' for "fold" instead, in which case all of your descriptions will be smushed together for your later editing pleasure.
Now press 'c' to commit the changes. Whee! Use hg ls
to see that everything is nice and pretty.
There is a new hg absorb
command that will take your working directory changes and automatically roll them into the appropriate non-public patch. I haven't started using it yet.
(chistedit has other nice tricks. Use 'v' to see the patch. j/k now go up and down a line at a time. Space goes down a page, page up/down work. J/K now switch between patches. Oops, I just noticed I didn't update the help to include that. 'v' to return back to the patch list. Now try 'm', which will bring up an editor after you 'c' commit the changes, allowing you to edit the commit message for each patch so marked.)
From my above example, you might think I use one changeset per bug. That's very bug-dependent; many times I'll have a whole set of patches for one bug, and I'll have multiple bugs in my patch stack at one time. If you do that too, be sure to put the bug number in your commit message early to avoid getting confused[4].
Splitting out changes for multiple patches
I'm not very disciplined about keeping my changes separate, and often end up in a situation where my working directory has changes that belong to multiple patches. Mercurial handles this well. If some of the changes should be applied to the topmost patch, use
% hg amend -i
to bring up a curses interface that will allow you to select just the changes that you want to merge into that top patch. Or skip that step, and instead do a sequence of
% hg commit -i -m 'M-foo'
runs to pick apart your changes into fragments that apply to the various changesets in your stack, then do the above.
Normally, I'll use hg amend -i
to select the new stuff that pertains to the top patch, hg commit -i
to pick apart stuff for one new feature, and a final hg commit
to commit the rest of the stuff.
% hg amend -i # Choose the stuff that belongs to the top patch
% hg commit -i -m 'Another feature'
% hg commit -i -m 'Yet another feature'
% hg commit -m 'One more feature using the remainder of the changes'
And if you accidentally get it wrong and amend a patch with stuff that doesn't belong to it, then do
% hg uncommit -a
% hg amend -i
That will empty out the top patch, leaving the changes in your working directory, then bring up the interface to allow you to re-select just the stuff that belongs in that top patch. The remnants will be in your working directory, so proceed as usual.
Navigating through your stack
When I want to work on a patch "deeper" in the stack, I use hg update -r
or hg prev
to update to it, then make my changes and hg amend
to include them into the changeset. If I am not at the top changeset, this will invalidate all of the other patches. My preferred way to fix this up is to use hg next --evolve
to rebase the old child on top of my update changeset and update to its new incarnation.
The usual evolve workflow you'll read elsewhere is to run hg evolve -a
to automatically rebase everything that needs rebasing, but these days I almost always use hg next --evolve
instead just so it does it one at a time and if a rebase runs into conflicts, it's more obvious to me which changeset is having the trouble. In fact, I made an alias
[alias]
advance = !while $HG next --evolve; do :; done
to advance as far as possible until the head changeset is reached, or a conflict occurs. YMMV.
Resolving conflicts
Speaking of conflicts, all this revision control craziness doesn't come for free. Conflicts are a fact of live, and it's nice to have a good merge tool. I'm not 100% happy with it, but the merge tool I prefer is kdiff3:
[ui]
merge = kdiff3
[merge-tools]
kdiff3.executable = ~/bin/kdiff3-wrapper
kdiff3.args = --auto $base $local $other -o $output -cs SyncMode=1
kdiff3.gui = True
kdiff3.premerge = True
kdiff3.binary = False
I don't remember what all that crap is for. It was mostly an attempt to get it to label the different patches being merged correctly, but I did it in the mq days, and these days I ignore the titles anyway. I kind of wish I did know which was which. Don't use the kdiff3.executable setting, since you don't have kdiff3-wrapper[5]. The rest is probably fine.
Uploading patches to bugs
I'm an old fart, so I almost always upload patches to bugzilla and request review there insead of using MozReview. If I already have a bug, the procedure is generally
% hg bzexport -r :fitzgen 1234567 -e
In the common case where I have a patch per bug, I usually won't have put the bug number in my commit message yet, so due to this setting in my ~/.hgrc:
[bzexport]
update-patch = 1,
bzexport will automatically prefix my commit message with "Bug 1234567 - ". It won't insert "r=fitzgen" or "r?fitzgen" or anything; I prefer to do that manually as a way to keep track of whether I've finished incorporating any review comments.
If I don't already have a bug, I will create it via bzexport:
% hg bzexport --new -r :fitzgen -e --title 'Crashes on Wednesdays'
Now, I must apologize, but that won't work for you. You will have to do
% hg bzexport --new -C 'Core :: GC' -r :fitzgen -e --title 'Crashes on Wednesdays'
because you don't have my fancy schmancy bzexport logic to automatically pick the component based on the files touched. Sorry about that; I'd have to do a bunch of cleanup to make that landable. And these days it's be better to rely on the moz.build bug component info instead of crawling through history.
Other useful flags are --blocks
, --depends
, --cc
, and --feedback
. Though I'll often fill those in when the editor pops up.
Oh, by the way, if you're nervous about it automatically doing something stupid when you're first learning, run with -i
aka --interactive
. It will ask before doing each step. Nothing bad will happen if you ^C out in the middle of that (though it will have already done what you allowed it to do; it can't uncreate a bugzilla bug or whatever, so don't say yes until you mean it.)
If I need to upload multiple patches, I'll update to each in turn (often using hg next
and hg prev
, which come with evolve) and run hg bzexport
for each.
Uploading again
I'm sloppy and frequently don't get things right on the first try, so I'll need to upload again. Now this is a little tricky, because you want to mark the earlier versions as obsolete. In mq times, this was pretty straightforward: your patches had names, and it could just find the bug's patch attachment with the matching name. Without names, it's harder. You might think that it would be easiest to look for a matching commit message, and you'd probably be right, but it turns out that I tend to screw up my early attempts enough that I have to change what my patches do, and that necessitates updating the commit message.
So if you are using evolve, bzexport is smart and looks backwards through the history of each patch to find its earlier versions. (When you amend a changeset, or roll/fold another changeset into it, evolve records markers saying your old patch was "succeeded" by the new version.) For the most part, this Just Works. Unless you split one patch into two. Then your bzexport will get a bit confused, and your new patches will obsolete each other in bugzilla. 🙁 My bzexport is more smarterer, and will make a valiant attempt to find an appropriate "base" changeset to use for each one. It still isn't perfect, but I have not yet encountered a situation where it gets it wrong. (Or at least not very wrong. If you fold two patches together, it'll only obsolete one of the originals, for example.) That fix should be relatively easy to land, and I "promise" to land it soon[6].
Remember to use the -r flag again when you re-upload, assuming you're still ready for it to be reviewed. You don't need the bug number (or --new option) anymore, because bzexport will grab the bug number from the commit message, but it won't automatically re-request review from the same person. You might want to just upload the patch without requesting review, after all. But usually this second invocation would look like:
% hg bzexport -r :fitzgen
(the lack of -e there means it won't even bother to bring up an editor for a new comment to go along with the updated attachment. If you want the comment, use -e
. Or --comment "another attempt"
if you prefer.)
I've already covered this. Update to the appropriate patch, make your changes, hg amend
, hg advance
to clean up any conflicts right away, then probably hg update -r <...>
to get back to where you were.
Landing
I update to the appropriate patch. Use hg amend -m
to update the commit message, adding the "r=fitzgen". Or if I need to do a bunch of them, I will run hg che
(or just hg chistedit
), go to each relevant patch, use 'm' to change the action to 'mess' (short for "message"), 'c' to commit to this histedit action string, and edit the messages in my $EDITOR.
Now I use chistedit to shuffle my landable patches to the top of the screen (#0 is the changeset directly atop a public changeset). Do not reorder them any more than necessary. I'll update to the last changeset I want to land, and hg push mozilla-inbound -r .
. (Ok, really I use an 'mi' alias, and :gps magic makes '-r .' the default for mozilla repos. So I lied, I do hg push mi
.)
Next I'll usually do a final try push. I cd
to the top of my source checkout, then run:
% ./mach try
If you don't know try syntax, use https://mozilla-releng.net/trychooser/ to construct one. I've trained my brain to know various ones useful to what I work on, but you can't go too far wrong with
% ./mach try -b do -p all -u all[x64]
And this part is a lie; I actually use my hg trychooser
extension which has a slick curses UI based on a years-old database of try options. That I never use anymore. I do it manually, with something like
% hg trychooser -m 'try: -b do -p all -u all[x64]'
Forking your stack
If you commit a changeset on top of a non-top patch, you will fork your stack. The usual reason is that you've updated to some changeset, made a change, and run hg commit
. You now have multiple heads. hg will tell you "created new head". Which is ok, except it's not, because it's much more confusing than having a simple linear patch stack. (Or rather, a bunch of linear patch stacks, each with a bookmark at its head.)
I usually look up through my terminal output history to find the revision of the older head, then rebase it on top of the new head. But if you don't have that in your history, you can find it with the appropriate hg log
command. Something like
% hg log -r 'children(.^) and not .'
changeset: 418174:b7f1d672f3cd
will give it to you directly (see also hg help revsets
), assuming you haven't done anything else and made a mess. Now rebase the old child on top of your new head:
% hg rebase -b b7f1d672f3cd -d .
It will leave you updated to your new head, or rather the changeset that was formerly a head, but the other changesets will now be your descendants. hg next
a bunch of times to advance through them, or use my hg advance
alias to go all the way, or do it directly:
% hg update -r 'heads(.::)'
(if you're not used to the crazy revset abbreviations, you may prefer to write that as hg update -r 'heads(descendants(.))'
. I'm trying not to use too many abbreviations in this doc, but typing out "descendants" makes my fingers tired.)
Workspace management
So being able to jump all over your various feature bookmarks and things is cool, but I'm working with C++ here, and I hate touching files unnecessarily because it means a slow and painful rebuild. Personally, I keep two checkouts, ~/src/mozilla and ~/src/mozilla2. If I were more disciplined about disk space, I'd probably have a few more. Most people have several more. I used to have clever schemes of updating a master repository and then having all the others pull from it, but newer hg (and my DSL, I guess) is fast enough that I now just hg pull unified
manually whenever I need to. I use the default objdir, located in the top directory of my source checkout, because I like to be able to run hg commands from within the objdir. But I suspect it messes me up because hg and watchman have to deal with a whole bunch of files within the checkout area that they don't care about.
watchman
Oh yeah, watchman. It makes many operations way, way faster. Or at least it did; recently, it often slows things down before it gives up and times out. Yeah, I ought to file a bug on it. The log doesn't say much.
I can't remember how to set up watchman, sorry. It looks like I built it from source? Hm, maybe I should update, then. You need two pieces: the watchman daemon that monitors the filesystem, and the python mercurial extension that talks to the daemon to accelerate hg operations. The latter part can be enabled with
[extensions]
fsmonitor =
Maybe ./mach bootstrap sets up watchman for you these days? And ./mach mercurial-setup sets up fsmonitor? I don't know.
Debugging
debug
I have this crazy Perl script that I've hacked in various horrible ways over the years. It's awful, and awfully useful. If I'm running the JS shell, I do
% debug ./obj-js-debug/dist/bin/js somefile.js
to start up Emacs with gdb running inside it in gud mode. Or
% debug --record ./obj-js-debug/dist/bin/js somefile.js
to make an rr recording of the JS shell, then bring up Emacs with rr replay running inside it. Or
% debug --record ./jstests.py /obj-js-debug/dist/bin/js sometest.js
to make an rr recording of a whole process tree, then find a process that crashed and bring up Emacs with rr replay on that process running inside it. Or
% debug
to bring up Emacs with rr replay running on the last rr recording I've made, again automatically picking a crashing process. If it gets it wrong, I can always do
% rr ps
# identify the process of interest
% debug --rrpid 1234
to tell it which one. Or
% ./mach test --debugger=debug some/test/file
to run the given test with hopefully the appropriate binary running under gdb inside Emacs inside the woman who swallowed a fly I don't know why. Or
% debug --js ./obj-js-debug/dist/bin/js somefile.js
to bring up Emacs running jorendb[7].
rr
I love me my rr. I have a .gdbinit.py startup file that creates a handy command for displaying the event number and tick count to keep me oriented chronologically:
(rr) now
2592/100438197
Or I can make rr display that output on every prompt:
(rr) set rrprompt on
rr-aware prompt enabled
(rr 538/267592) fin
Run till exit from #0 blah blah
(rr 545/267619)
I have a .gdbinit file with some funky commands to set hardware watchpoints on GC mark bits so I can 'continue' and 'reverse-continue' through an execution to find where the mark bits are set. And strangely dear to my heart is the 'rfin' command, which is just an easier to type alias for 'reverse-finish'. Other gdb commands:
(rr) log $thread sees the bad value # $thread is replaced by eg T1
(rr) log also, obj is now $1 # gdb convenience vars ok
(rr) rfin
(rr) log {$2+4} bytes are required # {any gdb expr}
(rr) n
(rr) log -dump
562/8443 T2 sees the bad value
562/8443 also, obj is now 0x7ff687749c00
346/945 7 bytes are required
(rr) log -sorted
346/945 7 bytes are required
=> 562/8443 T2 sees the bad value
562/8443 also, obj is now 0x7ff687749c00
(rr) log -edit # brings up $EDITOR on your full log file
The idea is to be able to move around in time, logging various things, and then use log -sorted
to display the log messages in chronological order according to the execution. (Note that when you do this, the next point in time coming up will be labeled with "=>" to show you when you are.) You might consider using this in conjunction with command
as a simple way of automatically tracing the evolution of some value:
(rr) b HashTable::put
Breakpoint 1 set at HashTable::put(Entry)
(rr) comm 1
> log [$thread] in put(), table size is now {mEntries}
> cont
> end
(rr) c
Boom! You now have the value of mEntries every time put() is called. Or consider doing that with a hardware watchpoint. (But watch out for log messages in breakpoints; it will execute the log command every time you encounter the breakpoint, so if you go forwards and backwards across the breakpoint several times, you'll end up with a bunch of duplicate entries in your log. log -edit
is useful for manually cleaning those up.)
Note that the default log filename is based on the process ID, and the logging will append entries across multiple rr replay
runs. So if you run muliple sessions of rr replay
on the same process recording, all of your log messages will be collected together. Use set logfile
to switch to a different file.
Finally, there's a simple pp
command, where pp foo
is equivalent to python print(foo)
.
[1] https://www.mercurial-scm.org/wiki/EvolveExtension - install evolve by cloning hg clone https://bitbucket.org/marmoute/mutable-history
somewhere, then adding it into your ~/.hgrc:
[extensions]
evolve = ~/lib/hg/mutable-history/hgext/evolve.py
[2] "public" is the name of a mercurial phase. It means a changeset that has been pushed to mozilla-inbound or similar. Stuff you're working on will ordinarily be in the "draft" phase until you push it. ↩
[3] hg clone https://bitbucket.org/facebook/hg-experimental
somewhere, then activate it with
[extensions]
chistedit = ~/lib/hg/hg-experimental/hgext3rd/chistedit.py
[4] When I have one patch per bug, I'll usually use hg bzexport --update
to fill in the bug numbers. Especially since I normally file the bug in the first place with hg bzexport --new
, so I don't even have a bug number until I do that.
[5] kdiff3-wrapper was pretty useful back in the day; kdiff3 has a bad habit of clearing the execute (chmod +x) bit when merging, so kdiff3-wrapper is a shell script that runs kdiff3 and then fixes up the bits afterwards. I don't know if it still has that issue?
[6] The quotes around "promise" translate more or less to "do not promise".
[7] jorendb is a relatively simple JS debugger that jorendorff wrote, I think to test the Debugger API. I suspect he's amused that I attempt to use it for anything practical. I'm sure the number of people for whom it is relevant is vanishingly small, but I love having it when I need it. (It's for the JS shell only. Nobody uses the JS shell for any serious scripting; why would you, when you have web browser and Node?) (I'm Nobody.)